Euler's numbers on sets of permutations and analogues of Wilson's theorem
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 9-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Euler's numbers on sets of permutations are defined. By using them the analogues of Wilson's theorem for the numbers of standard complete mappings and for the numbers of standard strong complete mappings are proved.
Mots-clés : permutation
Keywords: Euler's numbers, complete mappings, Wilson's theorem.
@article{PDMA_2014_7_a1,
     author = {L. N. Bondarenko and M. L. Sharapova},
     title = {Euler's numbers on sets of permutations and analogues of {Wilson's} theorem},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {9--11},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/}
}
TY  - JOUR
AU  - L. N. Bondarenko
AU  - M. L. Sharapova
TI  - Euler's numbers on sets of permutations and analogues of Wilson's theorem
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 9
EP  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/
LA  - ru
ID  - PDMA_2014_7_a1
ER  - 
%0 Journal Article
%A L. N. Bondarenko
%A M. L. Sharapova
%T Euler's numbers on sets of permutations and analogues of Wilson's theorem
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 9-11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/
%G ru
%F PDMA_2014_7_a1
L. N. Bondarenko; M. L. Sharapova. Euler's numbers on sets of permutations and analogues of Wilson's theorem. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 9-11. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/

[1] Stenli R., Perechislitelnaya kombinatorika, v. 1, Mir, M., 1990 | MR

[2] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR

[3] Hsiang J., Hsu D. F., Shieh Y. P., “On the hardness of counting problems of complete mappings”, Discr. Math., 277 (2004), 87–100 | DOI | MR | Zbl

[4] Sloane N. J. A., The on-line encyclopedia of integer sequences, http://oeis.org/A003111