Euler's numbers on sets of permutations and analogues of Wilson's theorem
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 9-11
Cet article a éte moissonné depuis la source Math-Net.Ru
Euler's numbers on sets of permutations are defined. By using them the analogues of Wilson's theorem for the numbers of standard complete mappings and for the numbers of standard strong complete mappings are proved.
Mots-clés :
permutation
Keywords: Euler's numbers, complete mappings, Wilson's theorem.
Keywords: Euler's numbers, complete mappings, Wilson's theorem.
@article{PDMA_2014_7_a1,
author = {L. N. Bondarenko and M. L. Sharapova},
title = {Euler's numbers on sets of permutations and analogues of {Wilson's} theorem},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {9--11},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/}
}
TY - JOUR AU - L. N. Bondarenko AU - M. L. Sharapova TI - Euler's numbers on sets of permutations and analogues of Wilson's theorem JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2014 SP - 9 EP - 11 IS - 7 UR - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/ LA - ru ID - PDMA_2014_7_a1 ER -
L. N. Bondarenko; M. L. Sharapova. Euler's numbers on sets of permutations and analogues of Wilson's theorem. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 9-11. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a1/
[1] Stenli R., Perechislitelnaya kombinatorika, v. 1, Mir, M., 1990 | MR
[2] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR
[3] Hsiang J., Hsu D. F., Shieh Y. P., “On the hardness of counting problems of complete mappings”, Discr. Math., 277 (2004), 87–100 | DOI | MR | Zbl
[4] Sloane N. J. A., The on-line encyclopedia of integer sequences, http://oeis.org/A003111