About the minimal primitive matrices
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 7-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quadratic Boolean matrix $A$ is called a primitive matrix if some its degree does not contain 0's. A primitive matrix is called a minimal primitive matrix if it becomes non-primitive matrix after replacing any one 1 in it by 0. The height of a primitive matrix is defined as the least Hamming's distance between it and a minimal primitive matrix. In the paper, properties of minimal primitive matrices are studied. The amount of minimal primitive matrices of order $n$ is estimated. An algorithm for estimating the height of a primitive matrix is proposed.
Mots-clés : primitive matrix, antichain
Keywords: lattice, computational complexity of the algorithm.
@article{PDMA_2014_7_a0,
     author = {R. I. Bar-Gnar and V. M. Fomichev},
     title = {About the minimal primitive matrices},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {7--9},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a0/}
}
TY  - JOUR
AU  - R. I. Bar-Gnar
AU  - V. M. Fomichev
TI  - About the minimal primitive matrices
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 7
EP  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a0/
LA  - ru
ID  - PDMA_2014_7_a0
ER  - 
%0 Journal Article
%A R. I. Bar-Gnar
%A V. M. Fomichev
%T About the minimal primitive matrices
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 7-9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a0/
%G ru
%F PDMA_2014_7_a0
R. I. Bar-Gnar; V. M. Fomichev. About the minimal primitive matrices. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 7-9. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a0/

[1] Fomichev B. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010

[2] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13

[3] Sachkov B. N., Tarakanov B. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR | Zbl