Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 112-116

Voir la notice de l'article provenant de la source Math-Net.Ru

The traditional technique for analysis of splitting algorithms for SAT problem is considered. A theorem establishing the upper bounds for execution time of algorithms in the case of balanced splitting is offered.
Keywords: splitting algorithms, computational complexity.
@article{PDMA_2013_6_a50,
     author = {V. V. Bykova},
     title = {Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for {SAT}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {112--116},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/}
}
TY  - JOUR
AU  - V. V. Bykova
TI  - Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 112
EP  - 116
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/
LA  - ru
ID  - PDMA_2013_6_a50
ER  - 
%0 Journal Article
%A V. V. Bykova
%T Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 112-116
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/
%G ru
%F PDMA_2013_6_a50
V. V. Bykova. Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 112-116. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/