Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 112-116
Voir la notice de l'article provenant de la source Math-Net.Ru
The traditional technique for analysis of splitting algorithms for SAT problem is considered. A theorem establishing the upper bounds for execution time of algorithms in the case of balanced splitting is offered.
Keywords:
splitting algorithms, computational complexity.
@article{PDMA_2013_6_a50,
author = {V. V. Bykova},
title = {Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for {SAT}},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {112--116},
publisher = {mathdoc},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/}
}
TY - JOUR AU - V. V. Bykova TI - Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2013 SP - 112 EP - 116 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/ LA - ru ID - PDMA_2013_6_a50 ER -
V. V. Bykova. Asymptotic solution of the recurrence relations in the analysis of splitting algorithms for SAT. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 112-116. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a50/