Classes of polynomial and variative coordinate polynomial functions over Galois ring
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 13-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new class of functions over Galois ring $R=\mathrm{GR}(q^m,p^m)$ named functions with the variative coordinate polynomiality (VCP-functions) is introduced. The relation between this class and the class of polynomial functions over $R$ is considered. An upper bound for the amount of such functions is presented, and sufficient conditions for a VCP-function not to be a polynomial are given.
Keywords: polynomial functions, Galois ring, coordinate set, VCP-functions.
@article{PDMA_2013_6_a5,
     author = {M. V. Zaets},
     title = {Classes of polynomial and variative coordinate polynomial functions over {Galois} ring},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {13--15},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a5/}
}
TY  - JOUR
AU  - M. V. Zaets
TI  - Classes of polynomial and variative coordinate polynomial functions over Galois ring
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 13
EP  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a5/
LA  - ru
ID  - PDMA_2013_6_a5
ER  - 
%0 Journal Article
%A M. V. Zaets
%T Classes of polynomial and variative coordinate polynomial functions over Galois ring
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 13-15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a5/
%G ru
%F PDMA_2013_6_a5
M. V. Zaets. Classes of polynomial and variative coordinate polynomial functions over Galois ring. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 13-15. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a5/

[1] Elizarov V. P., Konechnye koltsa, Gelios-ARV, M., 2006

[2] Zaets M. V., Nikonov V. G., Shishkov A. B., “Funktsii s variatsionno-koordinatnoi polinomialnostyu i ikh svoistva”, Otkrytoe obrazovanie, 2012, no. 3, 57–61

[3] Mikhailov D. A., Nechaev A. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskretnaya matematika, 16:1 (2004), 21–51 | DOI | Zbl