On local primitiveness of graphs and nonnegative matrices
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 81-83
Cet article a éte moissonné depuis la source Math-Net.Ru
Cryptographic generators constructed of control and generating blocks are investigated. Essential dependence of block elements on all signs of generator initial state is the useful property of such generators. The notion of a local primitiveness for a nonnegative matrix or graph is introduced to study such dependences. The conditions for matrix local primitiveness are obtained. A relation between the local primitiveness characteristics of matrices (graphs) of particular classes and parameters of generators is established.
Keywords:
exponent, local exponent, primitive graph, local primitiveness.
Mots-clés : primitive matrix
Mots-clés : primitive matrix
@article{PDMA_2013_6_a38,
author = {S. N. Kyazhin},
title = {On local primitiveness of graphs and nonnegative matrices},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {81--83},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a38/}
}
S. N. Kyazhin. On local primitiveness of graphs and nonnegative matrices. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 81-83. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a38/
[1] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010
[2] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000
[3] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112