About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 71-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G^*$ with $n + k$ vertices is vertex $k$-extension of a graph $G$ if every graph obtained by removing any $k$ vertices from $G^*$ contains $G$; it is called minimal vertex $k$-extension of $G$ if it has the least number of arcs among all vertex $k$-extensions of graph $G$ with $n+k$ vertices. A lower bound for the number of additional arcs in minimal vertex 1-extension of an oriented path is given.
Keywords: graph, minimal vertex extension, fault tolerance.
@article{PDMA_2013_6_a31,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {71--72},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 71
EP  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/
LA  - ru
ID  - PDMA_2013_6_a31
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 71-72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/
%G ru
%F PDMA_2013_6_a31
M. B. Abrosimov; O. V. Modenova. About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 71-72. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR

[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.

[3] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR

[4] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | DOI | MR