About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 71-72
Cet article a éte moissonné depuis la source Math-Net.Ru
A graph $G^*$ with $n + k$ vertices is vertex $k$-extension of a graph $G$ if every graph obtained by removing any $k$ vertices from $G^*$ contains $G$; it is called minimal vertex $k$-extension of $G$ if it has the least number of arcs among all vertex $k$-extensions of graph $G$ with $n+k$ vertices. A lower bound for the number of additional arcs in minimal vertex 1-extension of an oriented path is given.
Keywords:
graph, minimal vertex extension, fault tolerance.
@article{PDMA_2013_6_a31,
author = {M. B. Abrosimov and O. V. Modenova},
title = {About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {71--72},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/}
}
TY - JOUR AU - M. B. Abrosimov AU - O. V. Modenova TI - About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2013 SP - 71 EP - 72 IS - 6 UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/ LA - ru ID - PDMA_2013_6_a31 ER -
%0 Journal Article %A M. B. Abrosimov %A O. V. Modenova %T About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path %J Prikladnaya Diskretnaya Matematika. Supplement %D 2013 %P 71-72 %N 6 %U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/ %G ru %F PDMA_2013_6_a31
M. B. Abrosimov; O. V. Modenova. About the lower bounds for the number of additional arcs in a minimal vertex 1-extension of oriented path. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 71-72. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a31/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR
[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[3] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR
[4] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | DOI | MR