Constructions of ideal secret sharing schemes
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 41-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear homogeneous ideal secret sharing schemes are considered. The construction of such schemes is given over any field GF$(q)$. By adding participants it is shown that such schemes are reduced to schemes on projective spaces.
Keywords: homogeneous secret sharing schemes, matroids, Reed–Muller code.
@article{PDMA_2013_6_a20,
     author = {N. V. Medvedev and S. S. Titov},
     title = {Constructions of ideal secret sharing schemes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {41--42},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a20/}
}
TY  - JOUR
AU  - N. V. Medvedev
AU  - S. S. Titov
TI  - Constructions of ideal secret sharing schemes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 41
EP  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a20/
LA  - ru
ID  - PDMA_2013_6_a20
ER  - 
%0 Journal Article
%A N. V. Medvedev
%A S. S. Titov
%T Constructions of ideal secret sharing schemes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 41-42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a20/
%G ru
%F PDMA_2013_6_a20
N. V. Medvedev; S. S. Titov. Constructions of ideal secret sharing schemes. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 41-42. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a20/