Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2013_6_a18, author = {D. S. Kovalev}, title = {FPGA implementation of {FAPKC} symmetric equivalent}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {36--38}, publisher = {mathdoc}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a18/} }
D. S. Kovalev. FPGA implementation of FAPKC symmetric equivalent. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 36-38. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a18/
[1] Kovalev D. S., Trenkaev V. N., “Realizatsiya na PLIS shifra FAPKC”, Prikladnaya diskretnaya matematika. Prilozhenie, 2011, no. 4, 33–34
[2] Kovalev D. S., “Realizatsiya na PLIS shifra FAPKC-4”, Prikladnaya diskretnaya matematika. Prilozhenie, 2012, no. 5, 44–46
[3] Tao R. J., Finite automata and application to cryptography, Tsinghua University Press; Springer, 2008 | MR | Zbl
[4] Abubaker S., Lightweight and secure cryptosystems based on finite automata, http://webdocs.cs.ualberta.ca/ṽogt/networks/3-2-Abubaker.pdf
[5] Zakrevskii A. D., “Metod avtomaticheskoi shifratsii soobschenii”, Prikladnaya diskretnaya matematika, 2009, no. 2, 127–137 | MR
[6] Miloshenko A. V., “Apparatnaya realizatsiya shifrsistemy, osnovannoi na avtomate Zakrevskogo”, Prikladnaya diskretnaya matematika. Prilozhenie, 2010, no. 3, 23–24
[7] Rouvroy G., Standaert F. X., Quisquater J. J., Legat J. D., “Compact and efficient encryption/decryption module for FPGA implementation of the AES Rijndael very well suited for small embedded applications”, Proc. Intern. Conf. Inform. Technology: Coding and Computing, 2 (2004), 583–587
[8] Kitsos P., Sklavos N., Galanis M. D., Koufopavlou O., “64-bit Block ciphers: hardware implementations and comparison analysis”, Comput. Electric. Eng., 2004, no. 30, 593–604 | DOI | Zbl