Algorithm for recovering plaintext from ciphertext in McEliece cryptosystem
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 32-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

An attack on McEiece cryptosystem is considered. In it a plaintext is recovered from a ciphertext by solving the encryption equation. The solution is get in two steps: finding the error vector and solving the system of linear equations. For finding the error vector, the Bernstein–Lange–Peters's algorithm is used together with some optimization techniques. The complexity of the offered attack on the cryptosystem based on Goppa (1024, 524, 50)-code equals $2^{60{,}1}$ bit operations that is 27,5% less than by means of Bernstein–Lange–Peters's algorithm itself.
Keywords: McEliece's cryptosystem, nonstructural attacks, Bernstein–Lange–Peters's algorithm.
@article{PDMA_2013_6_a15,
     author = {A. K. Kaluzhin and I. V. Chizhov},
     title = {Algorithm for recovering plaintext from ciphertext in {McEliece} cryptosystem},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {32--33},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a15/}
}
TY  - JOUR
AU  - A. K. Kaluzhin
AU  - I. V. Chizhov
TI  - Algorithm for recovering plaintext from ciphertext in McEliece cryptosystem
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 32
EP  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a15/
LA  - ru
ID  - PDMA_2013_6_a15
ER  - 
%0 Journal Article
%A A. K. Kaluzhin
%A I. V. Chizhov
%T Algorithm for recovering plaintext from ciphertext in McEliece cryptosystem
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 32-33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a15/
%G ru
%F PDMA_2013_6_a15
A. K. Kaluzhin; I. V. Chizhov. Algorithm for recovering plaintext from ciphertext in McEliece cryptosystem. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 32-33. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a15/

[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 42:44, January and February (1978), 114–116

[2] Finiasz M., Sendrier N., “Security bounds for the design of code-based cryptosystems”, Asiacrypt'2009, LNCS, 5912, 2009, 88–105 | Zbl

[3] Bernstein D. J., Lange T., Peters C., “Attacking and defending the McEliece cryptosystem”, Post-Quantum Cryptography, Second International Workshop, PQCrypto 2008 (Cincinnaty, OH, USA, October 17–19, 2008), 31–46 | MR