On a nonlinearity degree definition for a discrete function on a cyclic group
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27
Cet article a éte moissonné depuis la source Math-Net.Ru
An additive approach is proposed to the definition of the nonlinearity degree of a discrete function on a cyclic group. For elementary abelian groups, this notion is equivalent to ordinary “multiplicative” one. For polynomial functions on a ring of integers $\bmod \,p^n$, this notion is equivalent to minimal degree of a polynomial. It is shown that the nonlinearity degree is a finite number if and only if the order of the group is a power of a prime. An upper bound for the nonlinearity degree of functions on a cyclic group of order $p^n$ is given.
Keywords:
nonlinearity degree, discrete functions.
@article{PDMA_2013_6_a12,
author = {A. V. Cheremushkin},
title = {On a nonlinearity degree definition for a discrete function on a cyclic group},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {26--27},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/}
}
A. V. Cheremushkin. On a nonlinearity degree definition for a discrete function on a cyclic group. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/
[1] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 22–33 | MR
[2] Keller G. and Olson F., “Counting polynomial functions (mod $p^n$)”, Duke Math. J., 35 (1968), 835–838 | DOI | MR | Zbl
[3] Chen Z., “On polynomial functions from $\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}\times \dots \mathbb{Z}_{n_r}$ to $\mathbb{Z}_m$”, Discrete Math., 162 (1996), 67–76 | DOI | MR | Zbl
[4] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii na tsiklicheskoi gruppe primarnogo poryadka”, Prikladnaya diskretnaya matematika, 2013, no. 2(20), 26–38