Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2013_6_a12, author = {A. V. Cheremushkin}, title = {On a nonlinearity degree definition for a discrete function on a cyclic group}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {26--27}, publisher = {mathdoc}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/} }
TY - JOUR AU - A. V. Cheremushkin TI - On a nonlinearity degree definition for a discrete function on a cyclic group JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2013 SP - 26 EP - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/ LA - ru ID - PDMA_2013_6_a12 ER -
A. V. Cheremushkin. On a nonlinearity degree definition for a discrete function on a cyclic group. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/
[1] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 22–33 | MR
[2] Keller G. and Olson F., “Counting polynomial functions (mod $p^n$)”, Duke Math. J., 35 (1968), 835–838 | DOI | MR | Zbl
[3] Chen Z., “On polynomial functions from $\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}\times \dots \mathbb{Z}_{n_r}$ to $\mathbb{Z}_m$”, Discrete Math., 162 (1996), 67–76 | DOI | MR | Zbl
[4] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii na tsiklicheskoi gruppe primarnogo poryadka”, Prikladnaya diskretnaya matematika, 2013, no. 2(20), 26–38