On a nonlinearity degree definition for a discrete function on a cyclic group
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

An additive approach is proposed to the definition of the nonlinearity degree of a discrete function on a cyclic group. For elementary abelian groups, this notion is equivalent to ordinary “multiplicative” one. For polynomial functions on a ring of integers $\bmod \,p^n$, this notion is equivalent to minimal degree of a polynomial. It is shown that the nonlinearity degree is a finite number if and only if the order of the group is a power of a prime. An upper bound for the nonlinearity degree of functions on a cyclic group of order $p^n$ is given.
Keywords: nonlinearity degree, discrete functions.
@article{PDMA_2013_6_a12,
     author = {A. V. Cheremushkin},
     title = {On a nonlinearity degree definition for a discrete function on a cyclic group},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {26--27},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - On a nonlinearity degree definition for a discrete function on a cyclic group
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 26
EP  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/
LA  - ru
ID  - PDMA_2013_6_a12
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T On a nonlinearity degree definition for a discrete function on a cyclic group
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 26-27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/
%G ru
%F PDMA_2013_6_a12
A. V. Cheremushkin. On a nonlinearity degree definition for a discrete function on a cyclic group. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/

[1] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 22–33 | MR

[2] Keller G. and Olson F., “Counting polynomial functions (mod $p^n$)”, Duke Math. J., 35 (1968), 835–838 | DOI | MR | Zbl

[3] Chen Z., “On polynomial functions from $\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}\times \dots \mathbb{Z}_{n_r}$ to $\mathbb{Z}_m$”, Discrete Math., 162 (1996), 67–76 | DOI | MR | Zbl

[4] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii na tsiklicheskoi gruppe primarnogo poryadka”, Prikladnaya diskretnaya matematika, 2013, no. 2(20), 26–38