On a nonlinearity degree definition for a discrete function on a cyclic group
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27
Voir la notice de l'article provenant de la source Math-Net.Ru
An additive approach is proposed to the definition of the nonlinearity degree of a discrete function on a cyclic group. For elementary abelian groups, this notion is equivalent to ordinary “multiplicative” one. For polynomial functions on a ring of integers $\bmod \,p^n$, this notion is equivalent to minimal degree of a polynomial. It is shown that the nonlinearity degree is a finite number if and only if the order of the group is a power of a prime. An upper bound for the nonlinearity degree of functions on a cyclic group of order $p^n$ is given.
Keywords:
nonlinearity degree, discrete functions.
@article{PDMA_2013_6_a12,
author = {A. V. Cheremushkin},
title = {On a nonlinearity degree definition for a discrete function on a cyclic group},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {26--27},
publisher = {mathdoc},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/}
}
TY - JOUR AU - A. V. Cheremushkin TI - On a nonlinearity degree definition for a discrete function on a cyclic group JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2013 SP - 26 EP - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/ LA - ru ID - PDMA_2013_6_a12 ER -
A. V. Cheremushkin. On a nonlinearity degree definition for a discrete function on a cyclic group. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 26-27. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a12/