An iterative construction of almost perfect nonlinear functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 24-25
Voir la notice de l'article provenant de la source Math-Net.Ru
Vectorial Boolean functions $F$ and $G$ are equivalent if $\forall a\neq 0\,\forall b\,[\exists x(F(x)\oplus F(x\oplus a)=b)\Leftrightarrow\exists x(G(x)\oplus G(x\oplus a)=b)]$. It is proved that every class of equivalent almost perfect nonlinear (APN) functions in $n$ variables contains $2^{2n}$ different functions. An
iterative procedure is proposed for constructing APN functions in $n+1$ variables from two APN and two Boolean functions in $n$ variables satisfying some conditions. Computer experiment show that among functions in small variables there are many functions satisfying these conditions.
Keywords:
vectorial Boolean function, APN function, iterative construction.
Mots-clés : $\gamma$-equivalence
Mots-clés : $\gamma$-equivalence
@article{PDMA_2013_6_a11,
author = {A. A. Frolova},
title = {An iterative construction of almost perfect nonlinear functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {24--25},
publisher = {mathdoc},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a11/}
}
A. A. Frolova. An iterative construction of almost perfect nonlinear functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 24-25. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a11/