An iterative construction of almost perfect nonlinear functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 24-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vectorial Boolean functions $F$ and $G$ are equivalent if $\forall a\neq 0\,\forall b\,[\exists x(F(x)\oplus F(x\oplus a)=b)\Leftrightarrow\exists x(G(x)\oplus G(x\oplus a)=b)]$. It is proved that every class of equivalent almost perfect nonlinear (APN) functions in $n$ variables contains $2^{2n}$ different functions. An iterative procedure is proposed for constructing APN functions in $n+1$ variables from two APN and two Boolean functions in $n$ variables satisfying some conditions. Computer experiment show that among functions in small variables there are many functions satisfying these conditions.
Keywords: vectorial Boolean function, APN function, iterative construction.
Mots-clés : $\gamma$-equivalence
@article{PDMA_2013_6_a11,
     author = {A. A. Frolova},
     title = {An iterative construction of almost perfect nonlinear functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {24--25},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a11/}
}
TY  - JOUR
AU  - A. A. Frolova
TI  - An iterative construction of almost perfect nonlinear functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 24
EP  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a11/
LA  - ru
ID  - PDMA_2013_6_a11
ER  - 
%0 Journal Article
%A A. A. Frolova
%T An iterative construction of almost perfect nonlinear functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 24-25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a11/
%G ru
%F PDMA_2013_6_a11
A. A. Frolova. An iterative construction of almost perfect nonlinear functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 24-25. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a11/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, Eurocrypt 1993, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20