Equivalence of primitive sets
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 20-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equivalence of primitive sets of natural numbers is investigated in connection with the diophantine Frobenius problem. The equivalence is used to simplify calculations of Frobenius number $g(a_1,\ldots,a_k)$ and all numbers that are not contained in the additive semigroup generated by the set $\{a_1,\ldots,a_k\}$.
Keywords: Frobenius's function, primitive set, additive semigroups of numbers.
@article{PDMA_2013_6_a10,
     author = {V. M. Fomichev},
     title = {Equivalence of primitive sets},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {20--24},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a10/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - Equivalence of primitive sets
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 20
EP  - 24
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a10/
LA  - ru
ID  - PDMA_2013_6_a10
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T Equivalence of primitive sets
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 20-24
%N 6
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a10/
%G ru
%F PDMA_2013_6_a10
V. M. Fomichev. Equivalence of primitive sets. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 20-24. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a10/

[1] Sylvester J. J., “Problem 7382”, Mathematical Questions from the Educational Times, 37 (1884), 26

[2] Alfonsin J. R., The Diophantine Frobenius problem, Oxford University Press, 2005 | MR | Zbl

[3] Fomichev V. M., “Reshenie diofantovoi problemy Frobeniusa”, Diskretnaya matematika, 2013, no. 2

[4] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | MR | Zbl

[5] Heap B. R., Lynn M. S., “A graph-theoretic algorithm for the solution of a linear diophantine problem of Frobenius”, Numerische Math., 1964, no. 6, 346–354 | DOI | MR | Zbl

[6] Heap B. R., Lynn M. S., “On a linear diophantine problem of Frobenius: an improved algorithm”, Numerische Math., 1965, no. 7, 226–231 | DOI | MR | Zbl

[7] Bogart C., Calculating Frobenius numbers with Boolean Toeplitz matrix multiplication, For Dr. Cull, CS 523, Oregon State University, March 17, 2009

[8] Nijenhuis M., “A minimal-path algorithm for the “money changing problem””, The American Mathematical Monthly, 86 (1979), 832–835 | DOI | MR | Zbl

[9] Bocker S., Liptak Z., The “money changing problem” revisited: computing the Frobenius number in time O$(ka_1)$, Technical Report No 2004-2, Univ of Bielefeld, Technical Faculty, 2004 | MR