Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2013_6_a10, author = {V. M. Fomichev}, title = {Equivalence of primitive sets}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {20--24}, publisher = {mathdoc}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a10/} }
V. M. Fomichev. Equivalence of primitive sets. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 20-24. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a10/
[1] Sylvester J. J., “Problem 7382”, Mathematical Questions from the Educational Times, 37 (1884), 26
[2] Alfonsin J. R., The Diophantine Frobenius problem, Oxford University Press, 2005 | MR | Zbl
[3] Fomichev V. M., “Reshenie diofantovoi problemy Frobeniusa”, Diskretnaya matematika, 2013, no. 2
[4] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | MR | Zbl
[5] Heap B. R., Lynn M. S., “A graph-theoretic algorithm for the solution of a linear diophantine problem of Frobenius”, Numerische Math., 1964, no. 6, 346–354 | DOI | MR | Zbl
[6] Heap B. R., Lynn M. S., “On a linear diophantine problem of Frobenius: an improved algorithm”, Numerische Math., 1965, no. 7, 226–231 | DOI | MR | Zbl
[7] Bogart C., Calculating Frobenius numbers with Boolean Toeplitz matrix multiplication, For Dr. Cull, CS 523, Oregon State University, March 17, 2009
[8] Nijenhuis M., “A minimal-path algorithm for the “money changing problem””, The American Mathematical Monthly, 86 (1979), 832–835 | DOI | MR | Zbl
[9] Bocker S., Liptak Z., The “money changing problem” revisited: computing the Frobenius number in time O$(ka_1)$, Technical Report No 2004-2, Univ of Bielefeld, Technical Faculty, 2004 | MR