Description of the class of permutations represented as a product of two permutations with fixed number of mobile points. II
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 21-22
Cet article a éte moissonné depuis la source Math-Net.Ru
The complete description for the structure of the class of permutations represented as the product of two permutations with $q$ and $q+t$ mobile points is given in the case $1\le t$, $2\le q(N-t)/2+1$.
@article{PDMA_2012_5_a9,
author = {A. B. Pichkur},
title = {Description of the class of permutations represented as a~product of two permutations with fixed number of mobile {points.~II}},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {21--22},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/}
}
TY - JOUR AU - A. B. Pichkur TI - Description of the class of permutations represented as a product of two permutations with fixed number of mobile points. II JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2012 SP - 21 EP - 22 IS - 5 UR - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/ LA - ru ID - PDMA_2012_5_a9 ER -
%0 Journal Article %A A. B. Pichkur %T Description of the class of permutations represented as a product of two permutations with fixed number of mobile points. II %J Prikladnaya Diskretnaya Matematika. Supplement %D 2012 %P 21-22 %N 5 %U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/ %G ru %F PDMA_2012_5_a9
A. B. Pichkur. Description of the class of permutations represented as a product of two permutations with fixed number of mobile points. II. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 21-22. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/
[1] Pichkur A. B., “Opisanie klassa podstanovok, predstavimykh v vide proizvedeniya dvukh podstanovok s fiksirovannym chislom mobilnykh tochek”, Prikladnaya diskretnaya matematika. Prilozhenie, 2011, no. 4, 16–17