Description of the class of permutations represented as a~product of two permutations with fixed number of mobile points.~II
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 21-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The complete description for the structure of the class of permutations represented as the product of two permutations with $q$ and $q+t$ mobile points is given in the case $1\le t$, $2\le q(N-t)/2+1$.
@article{PDMA_2012_5_a9,
     author = {A. B. Pichkur},
     title = {Description of the class of permutations represented as a~product of two permutations with fixed number of mobile {points.~II}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {21--22},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/}
}
TY  - JOUR
AU  - A. B. Pichkur
TI  - Description of the class of permutations represented as a~product of two permutations with fixed number of mobile points.~II
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 21
EP  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/
LA  - ru
ID  - PDMA_2012_5_a9
ER  - 
%0 Journal Article
%A A. B. Pichkur
%T Description of the class of permutations represented as a~product of two permutations with fixed number of mobile points.~II
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 21-22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/
%G ru
%F PDMA_2012_5_a9
A. B. Pichkur. Description of the class of permutations represented as a~product of two permutations with fixed number of mobile points.~II. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 21-22. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a9/

[1] Pichkur A. B., “Opisanie klassa podstanovok, predstavimykh v vide proizvedeniya dvukh podstanovok s fiksirovannym chislom mobilnykh tochek”, Prikladnaya diskretnaya matematika. Prilozhenie, 2011, no. 4, 16–17