Graph congruences: some combinatorial properties
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 93-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

A congruence relation of a path is an equivalence relation on the set of its vertices all of whose classes are independent subsets. It is proved (theorem 1) that the number of all congruence relations of a path with $m$ edges equals to the number of all equivalence relations on a $m$-element set. For a given connected graph $G$ theorem 2 determines the length of the shortest path whose quotient-graph is $G$.
@article{PDMA_2012_5_a47,
     author = {E. O. Karmanova},
     title = {Graph congruences: some combinatorial properties},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {93--94},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a47/}
}
TY  - JOUR
AU  - E. O. Karmanova
TI  - Graph congruences: some combinatorial properties
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 93
EP  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a47/
LA  - ru
ID  - PDMA_2012_5_a47
ER  - 
%0 Journal Article
%A E. O. Karmanova
%T Graph congruences: some combinatorial properties
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 93-94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a47/
%G ru
%F PDMA_2012_5_a47
E. O. Karmanova. Graph congruences: some combinatorial properties. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 93-94. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a47/

[1] Karmanova E. O., “O kongruentsiyakh tsepei”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 96–100

[2] Karmanova E. O., “Kongruentsii tsepei: nekotorye kombinatornye svoistva”, Prikladnaya diskretnaya matematika, 2012, no. 2(12), 86–89