@article{PDMA_2012_5_a42,
author = {M. B. Abrosimov and N. A. Kuznetsov},
title = {On the number of minimal vertex and edge $1$-extensions of cycles},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {84--86},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a42/}
}
M. B. Abrosimov; N. A. Kuznetsov. On the number of minimal vertex and edge $1$-extensions of cycles. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 84-86. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a42/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[3] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Mukhopadhyaya K., Sinha B. P., “Hamiltonian graphs with minimum number of edges for fault-tolerant topologies”, Inform. Process. Lett., 44 (1992), 95–99 | DOI | MR | Zbl
[5] Hsu L. H., Lin C. K., Graph Theory and Interconnection Networks, CRC Press, 2009 | MR | Zbl
[6] Abrosimov M. B., “O neizomorfnykh optimalnykh 1-otkazoustoichivykh realizatsiyakh nekotorykh grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 3, SGU, Saratov, 2000, 3–10
[7] Abrosimov M. B., “O neizomorfnykh minimalnykh rebernykh 1-rasshireniyakh grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 6, SGU, Saratov, 2004, 3–9
[8] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl
[9] Abrosimov M. B., Minimalnye vershinnye rasshireniya tsiklov s chislom vershin ne bolee odinnadtsati, Dep. v VINITI 14.08.2001, No 1869-V, SGU, Saratov, 2001, 17 pp.