Problems of almost threshold secret sharing schemes
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 53-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with questions of information security, secret sharing schemes. The problem of structure access realization by elliptic curves is discussed. It is shown that one can realize secret sharing schemes with infinite set of participants, and the everywhere density of rational points is an analogue of perfectness. The problem of unreplacible participants is considered. It is proved that the binary almost threshold matroids without unreplacible participants are only matroids on Reed–Muller codes of first order.
@article{PDMA_2012_5_a27,
     author = {N. V. Medvedev and S. S. Titov},
     title = {Problems of almost threshold secret sharing schemes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {53--54},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a27/}
}
TY  - JOUR
AU  - N. V. Medvedev
AU  - S. S. Titov
TI  - Problems of almost threshold secret sharing schemes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 53
EP  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a27/
LA  - ru
ID  - PDMA_2012_5_a27
ER  - 
%0 Journal Article
%A N. V. Medvedev
%A S. S. Titov
%T Problems of almost threshold secret sharing schemes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 53-54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a27/
%G ru
%F PDMA_2012_5_a27
N. V. Medvedev; S. S. Titov. Problems of almost threshold secret sharing schemes. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 53-54. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a27/

[1] Doktrina informatsionnoi bezopasnosti, [Elektronnyi resurs] http://www.rg.ru/oficial/doc/min_and_vedom/mim_bezop/doctr.shtm

[2] V. V. Yaschenko (obsch. red.), Vvedenie v kriptografiyu, Piter, SPb., 2001, 288 pp.

[3] Medvedev N. V., Titov S. S., “Pochti porogovye skhemy razdeleniya sekreta na ellipticheskikh krivykh”, Doklady TUSURa, 2011, no. 1(23), 91–96

[4] Gaidamakin N. A., Razgranichenie dostupa k informatsii v kompyuternykh sistemakh, Izd-vo Ural. un-ta, Ekaterinburg, 2003, 328 pp.

[5] Medvedev N. V., Titov S. S., “O topologii ellipticheskikh krivykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 1, 2012, 242–250

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR