Pseudo-Harmonic Signal Variations Generated by Labrouste Transforms of the Class $\Pi (T)$
Publications of the Department of Astronomy, Tome 17 (1989), p. 5 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Labrouste transforms of the class $\Pi (T)$ generate pseudo-harmonic fluctuations of a random process because the series of mutually correlated observations \{$Y_{i}$\} are obtained even when the series of white noise \{$X_{i}$\} are transformed. In the case of $\Pi (T) = T_{2}T_{3}T_{3}T_{4}$ transform amplitudes A of pseudo-harmonic fluctuations satisfy the relation: $A/\sqrt{\sigma}$ = c(n), where $\sigma$ is the standard deviation of results in the original series and c(n) is a parameter depending on the number of observations n. When n is increased, c(n) decreases. For example, if n = 500, c(n) = 0.18 and if n = 10000, c(n) = 0.03.
@article{PDA_1989_17_a0,
     author = {D. Djurovi\'c},
     title = {Pseudo-Harmonic {Signal} {Variations} {Generated} by {Labrouste} {Transforms} of the {Class} $\Pi (T)$},
     journal = {Publications of the Department of Astronomy},
     pages = {5 },
     publisher = {mathdoc},
     volume = {17},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDA_1989_17_a0/}
}
TY  - JOUR
AU  - D. Djurović
TI  - Pseudo-Harmonic Signal Variations Generated by Labrouste Transforms of the Class $\Pi (T)$
JO  - Publications of the Department of Astronomy
PY  - 1989
SP  - 5 
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDA_1989_17_a0/
LA  - en
ID  - PDA_1989_17_a0
ER  - 
%0 Journal Article
%A D. Djurović
%T Pseudo-Harmonic Signal Variations Generated by Labrouste Transforms of the Class $\Pi (T)$
%J Publications of the Department of Astronomy
%D 1989
%P 5 
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDA_1989_17_a0/
%G en
%F PDA_1989_17_a0
D. Djurović. Pseudo-Harmonic Signal Variations Generated by Labrouste Transforms of the Class $\Pi (T)$. Publications of the Department of Astronomy, Tome 17 (1989), p. 5 . http://geodesic.mathdoc.fr/item/PDA_1989_17_a0/