Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2025_14_1_a7, author = {B. Moosavi and M. Sh. Hosseini}, title = {New norm inequalities for commutators of {Hilbert} space operators}, journal = {Problemy analiza}, pages = {119--129}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/} }
B. Moosavi; M. Sh. Hosseini. New norm inequalities for commutators of Hilbert space operators. Problemy analiza, Tome 14 (2025) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/
[1] Abu-Omar A., Kittaneh F., “Numerical radius inequalities for products of Hilbert space operators”, J. Operator Theory, 72:2 (2014), 521–527 | DOI | MR | Zbl
[2] Bajmaeh A. B., Omidvar M. E., “Improved Inequalities for the Extension of Euclidean Numerical Radius”, Filomat, 33:14 (2019), 4519–4524 | DOI | MR | Zbl
[3] Buzano M. L., “Generalizzazione della diseguaglianza di Cauchy-Schwarz'”, Rend. Sem. Mat. Univ. Politech.Torino, 31 (1974), 405–409 | MR | Zbl
[4] Dragomir S. S., “Rivers inequalities for the numerical radius of linear operators in Hilbert space”, Bull. Austral. Math. Soc., 73 (2006), 255–262 | DOI | MR | Zbl
[5] Dragomir S. S., “Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces”, Tamkang J. Math., 39:1 (2008), 1–7 | DOI | MR | Zbl
[6] Dragomir S. S., “Some inequalities for commutators of bounded linear operators in a Hilbert space”, Filomat, 25:2 (2011), 151–162 | DOI | MR | Zbl
[7] Dragomir S. S., “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Mathematica, 40:2 (2007), 411–417 | DOI | MR | Zbl
[8] Dragomir S. S., “Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces”, Linear Algebra Appl., 419 (2006), 256–264 | DOI | MR | Zbl
[9] Kittaneh F., “Norm inequalities for commutators of positive operators and applications”, Mathematische Zeitschrift, 258:4 (2008), 845–849 | DOI | MR | Zbl
[10] Moosavi B., Shah Hosseini M., “Norm and numerical radius inequalities for Hilbert space operators”, The journal of analysis, 31:2 (2023), 1393–1400 | DOI | MR | Zbl
[11] Moosavi B., Shah Hosseini M., “Some inequalities for the numerical radius for operators in Hilbert $C^{*}-$modules space”, J. Inequal. Spec. Funct., 10 (2019), 77–84 | MR
[12] Omidvar M. E., Moradi H. R., “New estimates for the numerical radius of Hilbert space operators”, Linear Multilinear Algebra, 69:5 (2023), 946–956 | DOI | MR
[13] Omidvar M. E., Moradi H. R., “Better bounds on the numerical radii of Hilbert space operators”, Linear Algebra Appl., 604 (2020), 265–277 | DOI | MR | Zbl
[14] Shah Hosseini M., Moosavi B., “Inequalities for the norm and numerical radius for Hilbert $C^{*}-$module operators”, Problemy Analiza-Issues of Analysis, 9:2 (2020), 87–96 | DOI | MR | Zbl
[15] Shah Hosseini M., Moosavi B., “Some Numerical Radius Inequalities for Products of Hilbert Space Operators”, Filomat, 33:7 (2019), 2089–2093 | DOI | MR | Zbl
[16] Shah Hosseini M., Moosavi B., Moradi H. R., “An alternative estimate for the numerical radius of Hilbert space operators”, Math. Slovaca, 70:1, 233–237 | DOI | MR | Zbl
[17] Stampfli J. G., “The norm of a derivation”, Pacific J. Math., 33 (1970), 737–747 | DOI | MR | Zbl