New norm inequalities for commutators of Hilbert space operators
Problemy analiza, Tome 14 (2025) no. 1, pp. 119-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

New norm inequalities for commutators of Hilbert space operators are given. Among other inequalities, it is shown that if $A,$ $ B$ $\in \mathbb{B(H)}$ and there exists a real number $z_{0}$, such that $ \Vert A-z_{0}I\Vert=D_{A} $, then \begin{eqnarray*} \Vert AB \pm BA^*\Vert \leq 2 D_{A} \Vert B \Vert, \end{eqnarray*} where ${{D}_{A}}=\underset{\lambda \in \mathbb{C}}{\mathop{\inf }} \left\| A-\lambda I \right\| $. In particular, under some conditions, we prove that \begin{eqnarray*} \Vert AB\Vert \leq D_{A} \Vert B \Vert, \end{eqnarray*} which is an improvement of submultiplicative norm inequality. Also, we prove several numerical radius inequalities for products of two Hilbert space operators.
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius.
@article{PA_2025_14_1_a7,
     author = {B. Moosavi and M. Sh. Hosseini},
     title = {New norm inequalities for commutators of {Hilbert} space operators},
     journal = {Problemy analiza},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/}
}
TY  - JOUR
AU  - B. Moosavi
AU  - M. Sh. Hosseini
TI  - New norm inequalities for commutators of Hilbert space operators
JO  - Problemy analiza
PY  - 2025
SP  - 119
EP  - 129
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/
LA  - en
ID  - PA_2025_14_1_a7
ER  - 
%0 Journal Article
%A B. Moosavi
%A M. Sh. Hosseini
%T New norm inequalities for commutators of Hilbert space operators
%J Problemy analiza
%D 2025
%P 119-129
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/
%G en
%F PA_2025_14_1_a7
B. Moosavi; M. Sh. Hosseini. New norm inequalities for commutators of Hilbert space operators. Problemy analiza, Tome 14 (2025) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/

[1] Abu-Omar A., Kittaneh F., “Numerical radius inequalities for products of Hilbert space operators”, J. Operator Theory, 72:2 (2014), 521–527 | DOI | MR | Zbl

[2] Bajmaeh A. B., Omidvar M. E., “Improved Inequalities for the Extension of Euclidean Numerical Radius”, Filomat, 33:14 (2019), 4519–4524 | DOI | MR | Zbl

[3] Buzano M. L., “Generalizzazione della diseguaglianza di Cauchy-Schwarz'”, Rend. Sem. Mat. Univ. Politech.Torino, 31 (1974), 405–409 | MR | Zbl

[4] Dragomir S. S., “Rivers inequalities for the numerical radius of linear operators in Hilbert space”, Bull. Austral. Math. Soc., 73 (2006), 255–262 | DOI | MR | Zbl

[5] Dragomir S. S., “Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces”, Tamkang J. Math., 39:1 (2008), 1–7 | DOI | MR | Zbl

[6] Dragomir S. S., “Some inequalities for commutators of bounded linear operators in a Hilbert space”, Filomat, 25:2 (2011), 151–162 | DOI | MR | Zbl

[7] Dragomir S. S., “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Mathematica, 40:2 (2007), 411–417 | DOI | MR | Zbl

[8] Dragomir S. S., “Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces”, Linear Algebra Appl., 419 (2006), 256–264 | DOI | MR | Zbl

[9] Kittaneh F., “Norm inequalities for commutators of positive operators and applications”, Mathematische Zeitschrift, 258:4 (2008), 845–849 | DOI | MR | Zbl

[10] Moosavi B., Shah Hosseini M., “Norm and numerical radius inequalities for Hilbert space operators”, The journal of analysis, 31:2 (2023), 1393–1400 | DOI | MR | Zbl

[11] Moosavi B., Shah Hosseini M., “Some inequalities for the numerical radius for operators in Hilbert $C^{*}-$modules space”, J. Inequal. Spec. Funct., 10 (2019), 77–84 | MR

[12] Omidvar M. E., Moradi H. R., “New estimates for the numerical radius of Hilbert space operators”, Linear Multilinear Algebra, 69:5 (2023), 946–956 | DOI | MR

[13] Omidvar M. E., Moradi H. R., “Better bounds on the numerical radii of Hilbert space operators”, Linear Algebra Appl., 604 (2020), 265–277 | DOI | MR | Zbl

[14] Shah Hosseini M., Moosavi B., “Inequalities for the norm and numerical radius for Hilbert $C^{*}-$module operators”, Problemy Analiza-Issues of Analysis, 9:2 (2020), 87–96 | DOI | MR | Zbl

[15] Shah Hosseini M., Moosavi B., “Some Numerical Radius Inequalities for Products of Hilbert Space Operators”, Filomat, 33:7 (2019), 2089–2093 | DOI | MR | Zbl

[16] Shah Hosseini M., Moosavi B., Moradi H. R., “An alternative estimate for the numerical radius of Hilbert space operators”, Math. Slovaca, 70:1, 233–237 | DOI | MR | Zbl

[17] Stampfli J. G., “The norm of a derivation”, Pacific J. Math., 33 (1970), 737–747 | DOI | MR | Zbl