New norm inequalities for commutators of Hilbert space operators
Problemy analiza, Tome 14 (2025) no. 1, pp. 119-129

Voir la notice de l'article provenant de la source Math-Net.Ru

New norm inequalities for commutators of Hilbert space operators are given. Among other inequalities, it is shown that if $A,$ $ B$ $\in \mathbb{B(H)}$ and there exists a real number $z_{0}$, such that $ \Vert A-z_{0}I\Vert=D_{A} $, then \begin{eqnarray*} \Vert AB \pm BA^*\Vert \leq 2 D_{A} \Vert B \Vert, \end{eqnarray*} where ${{D}_{A}}=\underset{\lambda \in \mathbb{C}}{\mathop{\inf }} \left\| A-\lambda I \right\| $. In particular, under some conditions, we prove that \begin{eqnarray*} \Vert AB\Vert \leq D_{A} \Vert B \Vert, \end{eqnarray*} which is an improvement of submultiplicative norm inequality. Also, we prove several numerical radius inequalities for products of two Hilbert space operators.
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius.
@article{PA_2025_14_1_a7,
     author = {B. Moosavi and M. Sh. Hosseini},
     title = {New norm inequalities for commutators of {Hilbert} space operators},
     journal = {Problemy analiza},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/}
}
TY  - JOUR
AU  - B. Moosavi
AU  - M. Sh. Hosseini
TI  - New norm inequalities for commutators of Hilbert space operators
JO  - Problemy analiza
PY  - 2025
SP  - 119
EP  - 129
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/
LA  - en
ID  - PA_2025_14_1_a7
ER  - 
%0 Journal Article
%A B. Moosavi
%A M. Sh. Hosseini
%T New norm inequalities for commutators of Hilbert space operators
%J Problemy analiza
%D 2025
%P 119-129
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/
%G en
%F PA_2025_14_1_a7
B. Moosavi; M. Sh. Hosseini. New norm inequalities for commutators of Hilbert space operators. Problemy analiza, Tome 14 (2025) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a7/