Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2025_14_1_a5, author = {K. Fallahi and S. Jalali and G. Soleimani Rad}, title = {BPP and {FP} of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences}, journal = {Problemy analiza}, pages = {88--106}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/} }
TY - JOUR AU - K. Fallahi AU - S. Jalali AU - G. Soleimani Rad TI - BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences JO - Problemy analiza PY - 2025 SP - 88 EP - 106 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/ LA - en ID - PA_2025_14_1_a5 ER -
%0 Journal Article %A K. Fallahi %A S. Jalali %A G. Soleimani Rad %T BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences %J Problemy analiza %D 2025 %P 88-106 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/ %G en %F PA_2025_14_1_a5
K. Fallahi; S. Jalali; G. Soleimani Rad. BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences. Problemy analiza, Tome 14 (2025) no. 1, pp. 88-106. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/
[1] Abkar A., Gabeleh M., “Best proximity points for cyclic mappings in ordered metric spaces”, J. Optim Theory Appl., 151 (2011), 418–424 | DOI | MR | Zbl
[2] Abkar A., Gabeleh M., “Generalized cyclic contractions in partially ordered metric spaces”, Optim Lett., 6 (2012), 1819–1830 | DOI | MR | Zbl
[3] Agarwal R. P., Meehan M., O'Regan D., Fixed Point Theory and Applications, Cambridge University Press, 2009 | DOI | MR | Zbl
[4] Akhavan Armaki A., Pashapournia A., Soleimani Rad G., “Best proximity points of graphical $(\varphi-\psi)$-weak contractive mappings and applications to graphical integral-type inequalities”, Journal of Nonlinear and Convex Analysis, 25:7 (2024), 1777–1789 | Zbl
[5] Aryanpour L., Rahimi H., Soleimani Rad G., “Fixed point results for Hardy-Rogers type contractions with respect to a $c$-distance in graphical cone metric spaces”, Probl. Anal. Issues Anal., 9(27):1 (2020), 27–37 | DOI | MR | Zbl
[6] Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR
[7] Bondy, J. A., Murty U. S. R., Graph Theory, Springer, 2008 | DOI | MR | Zbl
[8] Dutta P. N., Choudury B. S., “A generalisation of contraction principle in metric spaces”, Fixed Point Theory Appl., 2008:406368 (2008) | DOI | MR
[9] Eldred, A. A., Veeramani P., “Existence and convergence of best proximity points”, J. Math. Anal. Appl., 323 (2006), 1001–1006 | DOI | MR | Zbl
[10] Fallahi K., Aghanians A., “On quasi-contractions in metric spaces with a graph”, Hacettepe J. Math. Stat., 45:4 (2016), 1033–1047 | MR | Zbl
[11] Fallahi K., Ayobian M., Soleimani Rad G., “Best proximity point results for $n$-cyclic and regular-$n$-noncyclic Fisher quasi-contractions in metric spaces”, Symmetry, 15:7:1469 (2023) | DOI
[12] Fallahi, K., Soleimani Rad G., Fulga A., “Best proximity points for $(\varphi-\psi)$-weak contractions and some applications”, Filomat, 37:6 (2023), 1835–1842 | DOI | MR
[13] Gabeleh M., “Best proximity points and fixed point results for certain maps in Banach spaces”, Numer. Funct. Anal. Optim., 36:8 (2015), 1013–1028 | DOI | MR | Zbl
[14] Jachymski J., “The contraction principle for mappings on a metric space with a graph”, Proc. Amer. Math. Soc., 136 (2008), 1359–1373 | DOI | MR | Zbl
[15] Kirk W. A., Srinivasan P. S., Veeramani P., “Fixed points for mappings satisfying cyclic contractive conditions”, Fixed Point Theory, 4:1 (2003), 79–86 | MR
[16] Nieto J. J., Rodríguez-López R., “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order, 22:3 (2005), 223–239 | DOI | MR | Zbl
[17] Petruşel A., Rus I. A., “Fixed point theorems in ordered $L$-spaces”, Proc. Amer. Math. Soc., 134 (2006), 411–418 | DOI | MR | Zbl
[18] Rafique M., Kalita H., Nazir T., “Fixed point of fuzzy multivalued $F$-contractve mappings with a directed graph in parametric metric spaces”, Probl. Anal. Issues Anal., 13(31):3 (2024), 79–100 | DOI | MR
[19] Raj V. S., “A best proximity point theorem for weakly contractive non-self mappings”, Nonlinear Anal., 74 (2011), 4804–4808 | DOI | MR | Zbl
[20] Ran A. C. M., Reurings M. C. B., “A fixed point theorem in partially ordered sets and some application to matrix equations”, Proc. Amer. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl
[21] Rhoades B. E., “A comparison of various definition of contractive mappings”, Trans. Amer. Math. Soc., 266 (1977), 257–290 | DOI | MR
[22] Rhoades B. E., “Some theorems on weakly contractive maps”, Nonlinear Anal., 47 (2001), 2683–2693 | DOI | MR | Zbl
[23] Sadiq Basha S., “Best proximity point theorems in the frameworks of fairly and proximally complete spaces”, J. Fixed Point Theory Appl., 19:3 (2017), 1939–1951 | DOI | MR | Zbl
[24] Sadiq Basha S., “Discrete optimization in partially ordered sets”, J. Glob. Optim., 54 (2012), 511–517 | DOI | MR | Zbl
[25] Suzuki T., Kikkawa M., Vetro C., “The existence of best proximity points in metric spaces with the property UC”, Nonlinear Anal., 71 (2009), 2918–2926 | DOI | MR | Zbl