BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences
Problemy analiza, Tome 14 (2025) no. 1, pp. 88-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this article is first to express a cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mapping, and second to present the existence of their best proximity points and fixed points. Several consequences are as well prepared to show the efficiency of our main results. One of the most important issues of this work is that it can also involve all former papers introduced by taking comparable and $\varepsilon$-close members.
Keywords: cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings, orbitally $\mathcal{G}$-continuous, property $\mathcal{P}$, unconditionally Cauchy property, best proximity point.
@article{PA_2025_14_1_a5,
     author = {K. Fallahi and S. Jalali and G. Soleimani Rad},
     title = {BPP and {FP} of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences},
     journal = {Problemy analiza},
     pages = {88--106},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/}
}
TY  - JOUR
AU  - K. Fallahi
AU  - S. Jalali
AU  - G. Soleimani Rad
TI  - BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences
JO  - Problemy analiza
PY  - 2025
SP  - 88
EP  - 106
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/
LA  - en
ID  - PA_2025_14_1_a5
ER  - 
%0 Journal Article
%A K. Fallahi
%A S. Jalali
%A G. Soleimani Rad
%T BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences
%J Problemy analiza
%D 2025
%P 88-106
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/
%G en
%F PA_2025_14_1_a5
K. Fallahi; S. Jalali; G. Soleimani Rad. BPP and FP of cyclic $\mathcal{G}$-$(\varphi-\psi)$-weak contractive mappings in graphical metric spaces and their consequences. Problemy analiza, Tome 14 (2025) no. 1, pp. 88-106. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a5/

[1] Abkar A., Gabeleh M., “Best proximity points for cyclic mappings in ordered metric spaces”, J. Optim Theory Appl., 151 (2011), 418–424 | DOI | MR | Zbl

[2] Abkar A., Gabeleh M., “Generalized cyclic contractions in partially ordered metric spaces”, Optim Lett., 6 (2012), 1819–1830 | DOI | MR | Zbl

[3] Agarwal R. P., Meehan M., O'Regan D., Fixed Point Theory and Applications, Cambridge University Press, 2009 | DOI | MR | Zbl

[4] Akhavan Armaki A., Pashapournia A., Soleimani Rad G., “Best proximity points of graphical $(\varphi-\psi)$-weak contractive mappings and applications to graphical integral-type inequalities”, Journal of Nonlinear and Convex Analysis, 25:7 (2024), 1777–1789 | Zbl

[5] Aryanpour L., Rahimi H., Soleimani Rad G., “Fixed point results for Hardy-Rogers type contractions with respect to a $c$-distance in graphical cone metric spaces”, Probl. Anal. Issues Anal., 9(27):1 (2020), 27–37 | DOI | MR | Zbl

[6] Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR

[7] Bondy, J. A., Murty U. S. R., Graph Theory, Springer, 2008 | DOI | MR | Zbl

[8] Dutta P. N., Choudury B. S., “A generalisation of contraction principle in metric spaces”, Fixed Point Theory Appl., 2008:406368 (2008) | DOI | MR

[9] Eldred, A. A., Veeramani P., “Existence and convergence of best proximity points”, J. Math. Anal. Appl., 323 (2006), 1001–1006 | DOI | MR | Zbl

[10] Fallahi K., Aghanians A., “On quasi-contractions in metric spaces with a graph”, Hacettepe J. Math. Stat., 45:4 (2016), 1033–1047 | MR | Zbl

[11] Fallahi K., Ayobian M., Soleimani Rad G., “Best proximity point results for $n$-cyclic and regular-$n$-noncyclic Fisher quasi-contractions in metric spaces”, Symmetry, 15:7:1469 (2023) | DOI

[12] Fallahi, K., Soleimani Rad G., Fulga A., “Best proximity points for $(\varphi-\psi)$-weak contractions and some applications”, Filomat, 37:6 (2023), 1835–1842 | DOI | MR

[13] Gabeleh M., “Best proximity points and fixed point results for certain maps in Banach spaces”, Numer. Funct. Anal. Optim., 36:8 (2015), 1013–1028 | DOI | MR | Zbl

[14] Jachymski J., “The contraction principle for mappings on a metric space with a graph”, Proc. Amer. Math. Soc., 136 (2008), 1359–1373 | DOI | MR | Zbl

[15] Kirk W. A., Srinivasan P. S., Veeramani P., “Fixed points for mappings satisfying cyclic contractive conditions”, Fixed Point Theory, 4:1 (2003), 79–86 | MR

[16] Nieto J. J., Rodríguez-López R., “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order, 22:3 (2005), 223–239 | DOI | MR | Zbl

[17] Petruşel A., Rus I. A., “Fixed point theorems in ordered $L$-spaces”, Proc. Amer. Math. Soc., 134 (2006), 411–418 | DOI | MR | Zbl

[18] Rafique M., Kalita H., Nazir T., “Fixed point of fuzzy multivalued $F$-contractve mappings with a directed graph in parametric metric spaces”, Probl. Anal. Issues Anal., 13(31):3 (2024), 79–100 | DOI | MR

[19] Raj V. S., “A best proximity point theorem for weakly contractive non-self mappings”, Nonlinear Anal., 74 (2011), 4804–4808 | DOI | MR | Zbl

[20] Ran A. C. M., Reurings M. C. B., “A fixed point theorem in partially ordered sets and some application to matrix equations”, Proc. Amer. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl

[21] Rhoades B. E., “A comparison of various definition of contractive mappings”, Trans. Amer. Math. Soc., 266 (1977), 257–290 | DOI | MR

[22] Rhoades B. E., “Some theorems on weakly contractive maps”, Nonlinear Anal., 47 (2001), 2683–2693 | DOI | MR | Zbl

[23] Sadiq Basha S., “Best proximity point theorems in the frameworks of fairly and proximally complete spaces”, J. Fixed Point Theory Appl., 19:3 (2017), 1939–1951 | DOI | MR | Zbl

[24] Sadiq Basha S., “Discrete optimization in partially ordered sets”, J. Glob. Optim., 54 (2012), 511–517 | DOI | MR | Zbl

[25] Suzuki T., Kikkawa M., Vetro C., “The existence of best proximity points in metric spaces with the property UC”, Nonlinear Anal., 71 (2009), 2918–2926 | DOI | MR | Zbl