Refinement of Erd\"os-Lax inequality for $\mathrm{N}$-operator
Problemy analiza, Tome 14 (2025) no. 1, pp. 42-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{P}_n$ be the space of all polynomials of degree less than or equal to $n$. In this paper, we establish a refinement of Erdös-Lax inequality in which the classical derivative (as an operator on $\mathcal{P}_n$) is replaced by a $B_n$ operator. The result obtained includes some interesting inequalities as special cases.
Keywords: inequalities, $\mathrm{N}$-operator, polynomials, zeros.
@article{PA_2025_14_1_a2,
     author = {F. A. Bhat},
     title = {Refinement of {Erd\"os-Lax} inequality for $\mathrm{N}$-operator},
     journal = {Problemy analiza},
     pages = {42--60},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a2/}
}
TY  - JOUR
AU  - F. A. Bhat
TI  - Refinement of Erd\"os-Lax inequality for $\mathrm{N}$-operator
JO  - Problemy analiza
PY  - 2025
SP  - 42
EP  - 60
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a2/
LA  - en
ID  - PA_2025_14_1_a2
ER  - 
%0 Journal Article
%A F. A. Bhat
%T Refinement of Erd\"os-Lax inequality for $\mathrm{N}$-operator
%J Problemy analiza
%D 2025
%P 42-60
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a2/
%G en
%F PA_2025_14_1_a2
F. A. Bhat. Refinement of Erd\"os-Lax inequality for $\mathrm{N}$-operator. Problemy analiza, Tome 14 (2025) no. 1, pp. 42-60. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a2/