A $d$-orthogonal polynomial set of Meixner type
Problemy analiza, Tome 14 (2025) no. 1, pp. 22-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this contribution, a new set of $d$-orthogonal polynomials of Meixner type is introduced. Some properties of these polynomials, including an explicit formula, hypergeometric representation, as well as higher-order recurrence relation, and difference equation, are analyzed.
Keywords: $d$-orthogonality, Meixner polynomials, generating function, recurrence relation, difference equation.
@article{PA_2025_14_1_a1,
     author = {W. Benamira and A. Nasri},
     title = {A $d$-orthogonal polynomial set of {Meixner} type},
     journal = {Problemy analiza},
     pages = {22--41},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a1/}
}
TY  - JOUR
AU  - W. Benamira
AU  - A. Nasri
TI  - A $d$-orthogonal polynomial set of Meixner type
JO  - Problemy analiza
PY  - 2025
SP  - 22
EP  - 41
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a1/
LA  - en
ID  - PA_2025_14_1_a1
ER  - 
%0 Journal Article
%A W. Benamira
%A A. Nasri
%T A $d$-orthogonal polynomial set of Meixner type
%J Problemy analiza
%D 2025
%P 22-41
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a1/
%G en
%F PA_2025_14_1_a1
W. Benamira; A. Nasri. A $d$-orthogonal polynomial set of Meixner type. Problemy analiza, Tome 14 (2025) no. 1, pp. 22-41. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a1/

[1] Aptekarev A. I., “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 423–447 | DOI | MR | Zbl

[2] Aptekarev A. I., Arvesú J., “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505 | DOI | MR | Zbl

[3] Arvesú J, Coussement J, Van Assche W., “Some discrete multiple orthogonal polynomials”, J. Comput. Appl. Math., 153:1-2 (2003), 19–45 | DOI | MR | Zbl

[4] Benamira W, Nasri A, Ellaggoune F., “Operational rules for a new family of d-orthogonal polynomials of Laguerre type”, Integral Transforms Spec. Funct., 35:2 (2024), 77–94 | DOI | MR | Zbl

[5] Ben Cheikh Y., “On obtaining dual sequences via quasi-monomiality”, Georgian Math. J., 2002, no. 9, 413–422 | DOI | MR

[6] Ben Cheikh Y., “Some results on quasi-monomiality”, Appl. Math. Comput., 141:1 (2003), 63–76 | DOI | MR | Zbl

[7] Ben Cheikh Y., Chaggara H., “Connection coefficients between Boas–Buck polynomial sets”, J. Math. Anal. Appl., 319:2 (2006), 665–689 | DOI | MR | Zbl

[8] Ben Cheikh Y, Douak K., “On the classical $d$-orthogonal polynomials defined by certain generating functions, II”, Bull. Belg. Math. Soc. Simon Stevin, 8:4 (2001), 591–605 | MR | Zbl

[9] Ben Cheikh Y., Zaghouani A., “$d$-Orthogonality via generating functions”, J. Comput. Appl. Math., 199:1 (2007), 2–22 | DOI | MR | Zbl

[10] Chaggara H., Boussorra H. S., “Operational rules and $d$-orthogonal polynomials of Laguerre type”, Integral Transforms Spec. Funct., 43:2 (2022), 1–17 | DOI | MR

[11] Chaggara H, Radhouan M., “On $d$-orthogonal polynomials of Sheffer type”, J. Difference Equ. Appl., 24:11 (2018), 1808–1829 | DOI | MR | Zbl

[12] Chihara T.S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl

[13] Fields L. L, Wimp J., “Expansions of hypergeometric functions in hypergeometric functions”, Math. Comp., 15:76 (1961), 390–395 | DOI | MR | Zbl

[14] Ismail M. E. H., Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[15] Maroni P., “L'orthogonalité et les ré currences de polynômes d'ordre supérieur à deux”, Ann .Fac. Sci. Toulouse Math., 10:1 (1989), 105–139 | DOI | MR | Zbl

[16] Nikiforov A. F, Suslov S. K, Uvarov V. B., Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | MR | Zbl

[17] Nikishin E. M, Sorokin V. N., Rational Approximations and Orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[18] Rainville E. D., Special Functions, Macmillan Company, New York, 1960 | MR | Zbl

[19] Sorokin V. N., “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | MR | Zbl

[20] Srivastava H. M, Manocha L., “A treatise on generating functions”, Bull. Amer. Math. Soc.(NS), 19 (1988), 346–348 | DOI | MR

[21] Van Iseghem J., “Vector orthogonal relations”, Vector QD-algorithm. J. Comput. Appl. Math., 19:1 (1987), 141–150 | DOI | MR | Zbl

[22] Varma S., “Some new d-orthogonal polynomial sets of Sheffer type”, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68:1 (2019), 913–92 | DOI | MR

[23] Zorlu Oğurlu S, Elidemir İ., “On the w-multiple Meixner polynomials of the second kind”, J. Difference Equ. Appl., 27:7 (2021), 966–985 | DOI | MR | Zbl