Some Bohr-type inequalities for sense-preserving harmonic mappings
Problemy analiza, Tome 14 (2025) no. 1, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the Bohr-type radii for various forms of Bohr-type inequalities for the sense-preserving harmonic mapping of the form $f(z) = h(z)+ \overline{g(z)}$.
Keywords: Bohr-type inequality, sense-preserving harmonic mapping, Taylor series coefficient.
@article{PA_2025_14_1_a0,
     author = {I. S. Amusa and A. A. Mogbademu},
     title = {Some {Bohr-type} inequalities for sense-preserving harmonic mappings},
     journal = {Problemy analiza},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a0/}
}
TY  - JOUR
AU  - I. S. Amusa
AU  - A. A. Mogbademu
TI  - Some Bohr-type inequalities for sense-preserving harmonic mappings
JO  - Problemy analiza
PY  - 2025
SP  - 3
EP  - 21
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2025_14_1_a0/
LA  - en
ID  - PA_2025_14_1_a0
ER  - 
%0 Journal Article
%A I. S. Amusa
%A A. A. Mogbademu
%T Some Bohr-type inequalities for sense-preserving harmonic mappings
%J Problemy analiza
%D 2025
%P 3-21
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2025_14_1_a0/
%G en
%F PA_2025_14_1_a0
I. S. Amusa; A. A. Mogbademu. Some Bohr-type inequalities for sense-preserving harmonic mappings. Problemy analiza, Tome 14 (2025) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a0/

[1] Aizenberg L., “Multidimensional analogues of Bohr's theorem on power series”, Proc. Amer. Math. Soc., 2000, 1147–1155 | DOI | MR | Zbl

[2] Ali R. M., Abu-Muhanna Y., Ponnusamy S., “On the Bohr inequality”, Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, 117, 2016, 265–295 | MR

[3] Bohr H., “A theorem concerning power series”, Proc. Lond. Math. Soc., 13:2 (1914), 1–5 | DOI | MR

[4] Bhowmik B., Das N., “Bohr phenomenon for locally univalent functions and logarithmic power series”, Comput. Methods Funct. Theory, 19:4 (2019), 729–745 | DOI | MR | Zbl

[5] Dixon P. G., “Banach algebra satisfying the non-unital von Neumann inequality”, Bull. London Math. Soc., 27 (1995), 359–362 | DOI | MR | Zbl

[6] Duren P., Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[7] Evdoridis S., Ponnusamy S., Rasila A., “Improved Bohr's inequality for locally univalent harmonic mappings”, Indag. Math. (N.S.), 30 (2019), 201–213 | DOI | MR | Zbl

[8] Hardy G. H., Riesz M., The general theory of Dirichlet series, Cambridge Univ. Press, Cambridge, 1915 | MR

[9] Ismagilov A., Kayumov I. R., Ponnusamy S., “Sharp Bohr Type Inequality”, J. Math. Anal. Appl., 489:1 (2020), 1–11 | DOI | MR

[10] Ismagilov A., Kayumova A., Kayumov I. R., Ponnusamy S., “Bohr type inequalities in some classes of analytic functions”, Complex analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, M., 2018, 69–82 | MR

[11] Kayumov I. R., Ponnusamy S., “Bohr's inequalities for the analytic functions with lacunary series and harmonic functions”, J. Math. Anal. and Appl., 465:2 (2018), 857–871 | DOI | MR | Zbl

[12] Kayumov I. R., Ponnusamy S., “Bohr inequality for odd analytic functions”, Comput. Methods Funct. Theory, 17 (2017), 679–688 | DOI | MR | Zbl

[13] Kayumov I. R., Ponnusamy S., “Improved version of Bohr's inequality”, C. R. Math. Acad. Sci. Paris, 356:3 (2018), 272–277 | DOI | MR | Zbl

[14] Kayumov I. R., Ponnusamy S., Shakirov N., “Bohr radius for locally univalent harmonic mappings”, Mathematische Nachrichten, 392:12 (2018), 1757–1768 | DOI | MR

[15] Liu G., Liu Zh., Ponnusamy S., “Redefined Bohr inequality for bounded analytic function”, Bull. Sci. math., 173:10 (2021), 30–54 | DOI | MR

[16] Ming-Sheng L., Yin-Miao S., Jun-Feng X., “Bohr-type inequalities of analytic functions”, J. Ineq. Appl., 345 (2018), 1–13 | DOI | MR