Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2025_14_1_a0, author = {I. S. Amusa and A. A. Mogbademu}, title = {Some {Bohr-type} inequalities for sense-preserving harmonic mappings}, journal = {Problemy analiza}, pages = {3--21}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2025_14_1_a0/} }
I. S. Amusa; A. A. Mogbademu. Some Bohr-type inequalities for sense-preserving harmonic mappings. Problemy analiza, Tome 14 (2025) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/PA_2025_14_1_a0/
[1] Aizenberg L., “Multidimensional analogues of Bohr's theorem on power series”, Proc. Amer. Math. Soc., 2000, 1147–1155 | DOI | MR | Zbl
[2] Ali R. M., Abu-Muhanna Y., Ponnusamy S., “On the Bohr inequality”, Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, 117, 2016, 265–295 | MR
[3] Bohr H., “A theorem concerning power series”, Proc. Lond. Math. Soc., 13:2 (1914), 1–5 | DOI | MR
[4] Bhowmik B., Das N., “Bohr phenomenon for locally univalent functions and logarithmic power series”, Comput. Methods Funct. Theory, 19:4 (2019), 729–745 | DOI | MR | Zbl
[5] Dixon P. G., “Banach algebra satisfying the non-unital von Neumann inequality”, Bull. London Math. Soc., 27 (1995), 359–362 | DOI | MR | Zbl
[6] Duren P., Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[7] Evdoridis S., Ponnusamy S., Rasila A., “Improved Bohr's inequality for locally univalent harmonic mappings”, Indag. Math. (N.S.), 30 (2019), 201–213 | DOI | MR | Zbl
[8] Hardy G. H., Riesz M., The general theory of Dirichlet series, Cambridge Univ. Press, Cambridge, 1915 | MR
[9] Ismagilov A., Kayumov I. R., Ponnusamy S., “Sharp Bohr Type Inequality”, J. Math. Anal. Appl., 489:1 (2020), 1–11 | DOI | MR
[10] Ismagilov A., Kayumova A., Kayumov I. R., Ponnusamy S., “Bohr type inequalities in some classes of analytic functions”, Complex analysis, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 153, VINITI, M., 2018, 69–82 | MR
[11] Kayumov I. R., Ponnusamy S., “Bohr's inequalities for the analytic functions with lacunary series and harmonic functions”, J. Math. Anal. and Appl., 465:2 (2018), 857–871 | DOI | MR | Zbl
[12] Kayumov I. R., Ponnusamy S., “Bohr inequality for odd analytic functions”, Comput. Methods Funct. Theory, 17 (2017), 679–688 | DOI | MR | Zbl
[13] Kayumov I. R., Ponnusamy S., “Improved version of Bohr's inequality”, C. R. Math. Acad. Sci. Paris, 356:3 (2018), 272–277 | DOI | MR | Zbl
[14] Kayumov I. R., Ponnusamy S., Shakirov N., “Bohr radius for locally univalent harmonic mappings”, Mathematische Nachrichten, 392:12 (2018), 1757–1768 | DOI | MR
[15] Liu G., Liu Zh., Ponnusamy S., “Redefined Bohr inequality for bounded analytic function”, Bull. Sci. math., 173:10 (2021), 30–54 | DOI | MR
[16] Ming-Sheng L., Yin-Miao S., Jun-Feng X., “Bohr-type inequalities of analytic functions”, J. Ineq. Appl., 345 (2018), 1–13 | DOI | MR