Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function
Problemy analiza, Tome 13 (2024) no. 3, pp. 64-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the generalized $\Gamma$-$C_F$-simulation function and establish the common fixed point result for weak $(\eta_F, g)$-contraction in complete $G$-metric space. The exploration extends to its ramifications on both quasi-metric spaces and metric spaces. The study explores the existence of a solution for a non-linear integral equation as an application of these results.
Keywords: $\Gamma$-$C_{F}$-simulation functions, $G$-metric spaces, quasi-metric spaces, weak contraction, common fixed point.
@article{PA_2024_13_3_a4,
     author = {S. V. Puvar and R. G. Vyas},
     title = {Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function},
     journal = {Problemy analiza},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/}
}
TY  - JOUR
AU  - S. V. Puvar
AU  - R. G. Vyas
TI  - Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function
JO  - Problemy analiza
PY  - 2024
SP  - 64
EP  - 78
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/
LA  - en
ID  - PA_2024_13_3_a4
ER  - 
%0 Journal Article
%A S. V. Puvar
%A R. G. Vyas
%T Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function
%J Problemy analiza
%D 2024
%P 64-78
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/
%G en
%F PA_2024_13_3_a4
S. V. Puvar; R. G. Vyas. Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function. Problemy analiza, Tome 13 (2024) no. 3, pp. 64-78. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/