Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_3_a4, author = {S. V. Puvar and R. G. Vyas}, title = {Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function}, journal = {Problemy analiza}, pages = {64--78}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/} }
TY - JOUR AU - S. V. Puvar AU - R. G. Vyas TI - Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function JO - Problemy analiza PY - 2024 SP - 64 EP - 78 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/ LA - en ID - PA_2024_13_3_a4 ER -
S. V. Puvar; R. G. Vyas. Common fixed point in $G$-metric spaces via generalized $\Gamma$-$C_F$-simulation function. Problemy analiza, Tome 13 (2024) no. 3, pp. 64-78. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a4/
[1] Agarwal R. P., Kadelburg Z., Radenovic S., “On coupled fixed point results in asymmetric G-metric spaces”, Journal of Inequalities and Applications, 2013 (2013), 1–12 | DOI | MR | Zbl
[2] Agarwal R. P., Karapinar E., O'Regan D., Roldán-López-De Hierro A. F., Fixed point theory in metric type spaces, Springer, 2015 | MR | Zbl
[3] Ansari A. H., “Note on $\varphi$-$\psi$-contractive type mappings and related fixed point”, The 2nd Regional Conference on Math. Appl. (PNU, Sept. 2014), 377–380
[4] Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fundam. Math., 3:1 (1922), 133–181 | DOI | MR
[5] Berinde V., Rus I. A., “Asymptotic regularity, fixed points and successive approximations”, Filomat, 34:3 (2020), 965–981 | DOI | MR | Zbl
[6] Chanda A., Dey L. K., Radenovic S., “Simulation functions: a survey of recent results”, Revista de la Real Academia de Ciencias Exactas, Fnsicas y Naturales. Serie Mathematics, 111:3 (2019), 2923–2957 | DOI | MR
[7] Jleli M., Samet B., “Remarks on G-metric spaces and fixed point theorems”, Fixed Point Theory Appl., 2012:1 (2012), 210, 7 pp. | DOI | MR | Zbl
[8] Karap?nar E., Joonaghany G. H., Khojasteh F., “Study of $\Gamma $-simulation functions, $Z_\Gamma$-contractions and revisiting the $L$-contractions”, Filomat, 35:1 (2021), 201–224 | DOI | MR | Zbl
[9] Khojasteh F., Shukla S., Radenovic̀ S., “A new approach to the study of fixed point theory for simulation functions”, Filomat, 29:6 (2015), 1189–1194 | DOI | MR | Zbl
[10] Puvar S. V., Vyas R. G., “Ćirić type results in quasi-metric spaces and $G$-metric spaces using simulation function”, Probl. Anal. Issues Anal., 11:2 (2022), 72–90 | DOI | MR | Zbl
[11] Puvar S. V., Vyas R. G., “Almost Suzuki type common fixed point result via extended $\Gamma$-$C_F$-simulation functions”, Adv. Math. Sci. Appl., 33:1 (2024), 217–229
[12] Radenovic S., Vetro F., Vujakovic J., “An alternative and easy approach to fixed point results via simulation functions”, Demonstratio Mathematica, 50:1 (2017), 223–230 | DOI | MR | Zbl
[13] Radenovic S., Chandok S., “Simulation type functions and coincidence points”, Filomat, 32:1 (2018), 141–147 | DOI | MR | Zbl
[14] Samet B., Vetro C., Vetro F., “Remarks on G-metric spaces”, Intern. J. Anal., 2013 (2013), 6 pp. | DOI | MR
[15] Zead M., Brailey S., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal., 7:2 (2006), 289–297 | MR | Zbl