Uncertainty principles and Calder\'on's formulas for the deformed Hankel $L^2_\alpha$-multiplier operators
Problemy analiza, Tome 13 (2024) no. 3, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to introduce the deformed Hankel $L^2_\alpha$-multiplier operators and to give some new results related to these operators as Plancherel’s, Calderón's reproducing formulas and Heisenberg's, Donoho-Stark's uncertainty principles. Next, using the theory of reproducing kernels, we give best estimates and an integral representation of the extremal functions related to these operators on weighted Sobolev spaces.
Keywords: deformed Hankel transform, Calderón's reproducing formulas, extremal functions, Heisenberg's uncertainty principle, Donoho-Stark's uncertainty principle.
@article{PA_2024_13_3_a0,
     author = {A. Chana and A. Akhlidj},
     title = {Uncertainty principles and {Calder\'on's} formulas for the deformed {Hankel} $L^2_\alpha$-multiplier operators},
     journal = {Problemy analiza},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a0/}
}
TY  - JOUR
AU  - A. Chana
AU  - A. Akhlidj
TI  - Uncertainty principles and Calder\'on's formulas for the deformed Hankel $L^2_\alpha$-multiplier operators
JO  - Problemy analiza
PY  - 2024
SP  - 3
EP  - 22
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_3_a0/
LA  - en
ID  - PA_2024_13_3_a0
ER  - 
%0 Journal Article
%A A. Chana
%A A. Akhlidj
%T Uncertainty principles and Calder\'on's formulas for the deformed Hankel $L^2_\alpha$-multiplier operators
%J Problemy analiza
%D 2024
%P 3-22
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_3_a0/
%G en
%F PA_2024_13_3_a0
A. Chana; A. Akhlidj. Uncertainty principles and Calder\'on's formulas for the deformed Hankel $L^2_\alpha$-multiplier operators. Problemy analiza, Tome 13 (2024) no. 3, pp. 3-22. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a0/

[1] Aronszajn N., “Theory of reproducing kernels”, Trans. Am. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl

[2] Banuelos R., Bogdan K., “Livy processes and Fourier multipliers”, J. Funct. Anal., 250:1 (2007), 197–213 | DOI | MR | Zbl

[3] Donoho D. L., Stark P. B., “Uncertainty principles and signal recovery”, SIAM J. Appl. Math., 49:3 (1989), 906–931 | DOI | MR | Zbl

[4] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Am. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[5] Htsrmander L., “Estimates for translation invariant operators in $L_p$ spaces”, Acta Math., 104:1-2 (1960), 93–140 | DOI | MR

[6] Johansen T. R., “Weighted inequalities and uncertainty principles for the $(k, a)$-generalized Fourier transform”, Int. J. Math., 27:03 (2016), 1650019 | DOI | MR | Zbl

[7] Kimeldorf G., Wahba G., “Some results on Tchebycheffian spline functions”, J. Math. Anal. Appl., 33:1 (1971), 82–95 | DOI | MR | Zbl

[8] Kumar V., Ruzhansky M., “$L^p-L^q$ boundedness of $(k, a)$-Fourier multipliers with applications to nonlinear equations”, Int. Math. Res. Not., 2023, no. 2, 1073–1093 | DOI | MR | Zbl

[9] Kumar V., Restrepo J. E., Ruzhansky M., “Asymptotic estimates for the growth of deformed Hankel transform by modulus of continuity”, Results Math., 79 (2024), 22 | DOI | MR | Zbl

[10] Matsuura T., Saitoh S., Trong D. D., “Approximate and analytical inversion formulas in heat conduction on multidimensional spaces”, Journal of Numerical Mathematics, 13:5 (2005), 479–493 | DOI | MR | Zbl

[11] McConnell T. R., “On Fourier multiplier transformations of Banach-valued functions”, Trans. Am. Math. Soc., 285:2 (1984), 739–757 | DOI | MR | Zbl

[12] Mikhlin S. G., “On the multipliers of Fourier integrals”, Dokl. Akad. Nauk SSSR, 109 (1956), 701–703 (in Russian) | MR | Zbl

[13] Negzaoui S., Oukili S., “Modulus of continuity and modulus of smoothness related to the deformed Hankel transform”, Results Math., 76 (2021), 164 | DOI | MR | Zbl

[14] Saitoh S., “Hilbert spaces induced by Hilbert space valued functions”, Proc. Am. Math. Soc., 89:1 (1983), 74–78 | DOI | MR | Zbl

[15] Saitoh S., Matsuura T., “Analytical and numerical inversion formulas in the Gaussian convolution by using the Paley-Wiener spaces”, Appl. Anal., 85:8 (2006), 901–915 | DOI | MR | Zbl

[16] Saïd S. B., Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl

[17] Saïd S. B., “A product formula and a convolution structure for a k-Hankel transform on RR”, J. Math. Anal. Appl., 463:2 (2018), 1132–1146 | DOI | MR | Zbl

[18] Saïd S. B., Boubatra M. A., Sifi M., “On the deformed Besov-Hankel spaces”, Opusc. Math., 40:2 (2020), 171–207 | DOI | MR | Zbl

[19] Watson G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1922 | MR