On strong summability of the Fourier series via deferred Riesz mean
Problemy analiza, Tome 13 (2024) no. 2, pp. 128-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The strong summability technique has attracted a remarkably large number of researchers for better convergence analysis of infinite series as well as Fourier series in the study of summability theory. The of strong summability method was introduced by Fekete (Math. És Termesz Ertesitö, 34 (1916), 759–786). In this paper, we introduce the notions of strong deferred Cesàro, deferred Nörlund, and deferred Riesz summability methods. We then consider our proposed strong deferred Riesz summability mean to establish and prove a new theorem for the summability of the Fourier series of an arbitrary periodic function. Moreover, for the effectiveness of our study, we present some concluding remarks demonstrating that some earlier published results are recovered from our main non-trivial Theorem.
Keywords: strong summability, deferred Cesàro summability, $[D\bar{N}, 2]$-summability, arbitrary periodic function, Fourier series.
Mots-clés : p_{n}^{(1)}
@article{PA_2024_13_2_a6,
     author = {J. Sahoo and B. B. Jena and S. K. Paikray},
     title = {On strong summability of the {Fourier} series via deferred {Riesz} mean},
     journal = {Problemy analiza},
     pages = {128--143},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a6/}
}
TY  - JOUR
AU  - J. Sahoo
AU  - B. B. Jena
AU  - S. K. Paikray
TI  - On strong summability of the Fourier series via deferred Riesz mean
JO  - Problemy analiza
PY  - 2024
SP  - 128
EP  - 143
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a6/
LA  - en
ID  - PA_2024_13_2_a6
ER  - 
%0 Journal Article
%A J. Sahoo
%A B. B. Jena
%A S. K. Paikray
%T On strong summability of the Fourier series via deferred Riesz mean
%J Problemy analiza
%D 2024
%P 128-143
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a6/
%G en
%F PA_2024_13_2_a6
J. Sahoo; B. B. Jena; S. K. Paikray. On strong summability of the Fourier series via deferred Riesz mean. Problemy analiza, Tome 13 (2024) no. 2, pp. 128-143. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a6/

[1] Aasma A., Dutta H., Natarajan P. N., An Introductory Course in Summability Theory, John Wiley $\$ Sons, Inc., Hoboken, USA, 2017 | MR | Zbl

[2] Albayrak H., Babaarslan F., Ölmez Ö., Aytar S., “On the statistical convergence of nested sequences of sets”, Probl. Anal. – Issues Anal., 11(29):3 (2022), 3–14 | DOI | MR | Zbl

[3] Akniyev G. G., “Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions”, Probl. Anal. – Issues Anal., 8(26):3 (2019), 3–15 | DOI | MR | Zbl

[4] Başar F., Dutta H., Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, Chapman and Hall/CRC, Taylor $\$ Francis Group, Boca Raton–London–New York, 2020 | MR

[5] Das A. A., Jena B. B., Paikray S. K., Jati R. K., “Statistical deferred weighted summability and associated Korovokin-type approximation theorem”, Nonlinear Sci. Lett. A, 9:3 (2018), 238–245 | MR

[6] Dutta H., Rhoades B. E. (eds.), Current Topics in Summability Theory and Applications, Springer, Singapore, 2016 | MR | Zbl

[7] Fekete M., “Vizsagà latok a Fourier-sorokol”, Math. És Termesz Ertesitö, 34 (1916), 759–786

[8] Hardy G. H., Littlewood J. E., “Sur la série de Fourier d'une fonction a carré sommable”, C. R. Acad. Sci. Paris, 156 (1913), 1307–1309 | MR

[9] Hyslop J. M., “Note on the strong summability of series”, Pro. Glasgow Math. Assoc., 1:1 (1951), 16–20 | DOI | MR

[10] Jena B. B., Paikray S. K., Misra U. K., “Strong Riesz summability of Fourier series”, Proyecciones J. Math., 39 (2020), 1615–1626 | DOI | MR | Zbl

[11] Jena B. B., Vandana, Paikray S. K., Misra U. K., “On Generalized Local Property of $| A;\delta| _ k $-Summability of Factored Fourier Series”, Int. J. Anal. Appl., 16 (2018), 209–221 | DOI | MR

[12] Jena B. B., Paikray S. K., Misra U. K., “A Tauberian theorem for double Cesàro summability method”, Int. J. Math. Math. Sci., 2016 (2016), 2431010, 1–4 | DOI | MR

[13] Jena B. B., Paikray S. K., Misra U. K., “Inclusion theorems on general convergence and statistical convergence of $(L, 1, 1)$-summability using generalized Tauberian conditions”, Tamsui Oxf. J. Inf. Math. Sci., 31 (2017), 101–115 | MR

[14] Jena B. B., Paikray S. K., Misra U. K., “Statistical deferred Cesàro summability and its applications to approximation theorems”, Filomat, 32 (2018), 2307–2319 | DOI | MR | Zbl

[15] Jena B. B., Mishra L. N., Paikray S. K., Misra U. K., “Approximation of signals by general matrix summability with effects of gibbs phenomenon”, Bol. Soc. Paran. Mat., 38 (2020), 141–158 | DOI | MR | Zbl

[16] Kambak Ç., Çanak İ., “Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r,~p} $”, Probl. Anal. – Issues Anal., 10(28):2 (2021), 44–53 | DOI | MR | Zbl

[17] Mittal M. L., “A Tauberian theorem on strong Nörlund summability”, J. Indian Math. Soc., 44 (1980), 369–377 | MR | Zbl

[18] Mittal M. L., “On strong Nörlund summability of Fourier series”, J. Math. Anal. Appl., 314 (2006), 75–84 | DOI | MR | Zbl

[19] Mittal M. L., Kumar R., “A note on strong Nörlund summability”, J. Math. Anal. Appl., 199 (1996), 312–322 | DOI | MR | Zbl

[20] Nath J., Tripathy B. C., Bhattacharya B., “On strongly almost convergence of double sequences via complex uncertain variable”, Probl. Anal. – Issues Anal., 11(29) (2022), 102–121 | DOI | MR | Zbl

[21] Paikray S. K., Jena B. B., Misra U. K., Statistical deferred Cesàro summability mean based on $(p, q)$-integers with application to approximation theorems, Advances in Summability and Approximation Theory, Springer Nature Singapore Pte Ltd, 2019 | DOI | MR

[22] Parida P., Paikray S. K., Dash M., Misra U. K., “Degree of approximation by product $(\overline{N}, p_{n}, q_{n})(E, q)$ summability of Fourier series of a signal belonging to $Lip(\alpha, r)$-class”, TWMS J. App. Eng. Math., 9 (2019), 901–908 | MR

[23] Raj K., Saini K., Mursaleen M., “Applications of the fractional difference operator for studying euler statistical convergence of sequences of fuzzy real numbers and associated Korovkin-type theorems”, Probl. Anal. – Issues Anal., 11(29) (2022), 91–108 | DOI | MR | Zbl

[24] Sharma S., Raj K., “A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence”, Probl. Anal. – Issues Anal., 12(30) (2023), 72–86 | DOI | MR | Zbl

[25] Srivastava H. M., Jena B. B., Paikray S. K., Misra U. K., “A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions”, Math. Methods Appl. Sci., 41 (2018), 671–683 | DOI | MR | Zbl

[26] Srivastava H. M., Jena B. B., Paikray S. K., Misra U. K., “Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (RACSAM), 112 (2018), 1487–1501 | DOI | MR | Zbl

[27] Srivastava H. M., Jena B. B., Paikray S. K., Misra U. K., “Deferred weighted $\mathcal{A}$-statistical convergence based upon the $(p, q)$-Lagrange polynomials and its applications to approximation theorems”, J. Appl. Anal., 24 (2018), 1–16 | DOI | MR | Zbl

[28] Zygmund A., Trigonometric Series, v. 1, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl