@article{PA_2024_13_2_a4,
author = {B. E. Levitskii and A. S. Ignatenko},
title = {Hyperelliptic integrals and special functions for the spatial variational problem},
journal = {Problemy analiza},
pages = {84--105},
year = {2024},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a4/}
}
B. E. Levitskii; A. S. Ignatenko. Hyperelliptic integrals and special functions for the spatial variational problem. Problemy analiza, Tome 13 (2024) no. 2, pp. 84-105. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a4/
[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M. K., “Topics in special functions”, Papers on Analysis, A volume dedicated to Olli Martio on the occasion of his 60th birthday, Report Univ. Jyväskylä, 83, 2001, 5–26 | DOI | MR | Zbl
[2] Anderson G. D., Vamanamurthy M. K., Vuorinen M. K., “Topics in special functions. II”, Conformal geometry and dynamics, 11 (2007), 250–270 | DOI | MR | Zbl
[3] Anderson G. D., Sugawa T., Vamanamurthy M. K., Vuorinen M. K., Special functions and hyperbolic metric, Manuscript, 2007 | MR
[4] Anderson G. D., Vuorinen M. K., Zhang X., “Topics in special functions. III”, Analytic number theory, approximation theory, and special functions, Springer, New York, 2014, 297–345 | DOI | MR | Zbl
[5] Bhayo B. A., “On the inequalities for the volume of the unit ball $\Omega_n$ in $R^n$”, Probl. Anal. – Issues Anal., 4(22):2 (2015), 12–22 | DOI | MR | Zbl
[6] Borgwardt K. H., The Simplex Method, Springer, Berlin, 1987 | MR | Zbl
[7] Caraman P., n-dimensional quasiconformal (QCf) mappings, Editura Acad. Romvne, Bucharest; Abacus Press, Tunbridge Wells, Kent, 1974 | MR | Zbl
[8] Ignatenko A. S., Levitskii B. E., “Method of the Optimal Control in the Solution of a Variational Probem”, Science Journal of VolSU. Mathematics. Physics, 6(37) (2016), 28–39 (in Russian) | DOI
[9] Zhang H., “New bounds and asymptotic expansions for the volume of the unit ball in Rn based on Padé approximation”, Results Math., 77 (2022), 116, 1–15 | DOI | MR