Hyperelliptic integrals and special functions for the spatial variational problem
Problemy analiza, Tome 13 (2024) no. 2, pp. 84-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the properties of special functions plays an important role in solving many problems in geometric function theory. We study the properties of hyperelliptic integrals and special functions, which definition includes a parameter that depends on the dimension of the space. The appearance of these functions is associated with the solution of a specific variational problem of finding in $n$-dimensional Euclidean space a surface that has the smallest area in a given metric among the hypersurfaces formed by rotation around the polar axis of a plane curve connecting two fixed points in the upper half-plane.
Keywords: special functions, hyperelliptic integrals, modulus of a family of surfaces, variational problem.
@article{PA_2024_13_2_a4,
     author = {B. E. Levitskii and A. S. Ignatenko},
     title = {Hyperelliptic integrals and special functions for the spatial variational problem},
     journal = {Problemy analiza},
     pages = {84--105},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a4/}
}
TY  - JOUR
AU  - B. E. Levitskii
AU  - A. S. Ignatenko
TI  - Hyperelliptic integrals and special functions for the spatial variational problem
JO  - Problemy analiza
PY  - 2024
SP  - 84
EP  - 105
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a4/
LA  - en
ID  - PA_2024_13_2_a4
ER  - 
%0 Journal Article
%A B. E. Levitskii
%A A. S. Ignatenko
%T Hyperelliptic integrals and special functions for the spatial variational problem
%J Problemy analiza
%D 2024
%P 84-105
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a4/
%G en
%F PA_2024_13_2_a4
B. E. Levitskii; A. S. Ignatenko. Hyperelliptic integrals and special functions for the spatial variational problem. Problemy analiza, Tome 13 (2024) no. 2, pp. 84-105. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a4/

[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M. K., “Topics in special functions”, Papers on Analysis, A volume dedicated to Olli Martio on the occasion of his 60th birthday, Report Univ. Jyväskylä, 83, 2001, 5–26 | DOI | MR | Zbl

[2] Anderson G. D., Vamanamurthy M. K., Vuorinen M. K., “Topics in special functions. II”, Conformal geometry and dynamics, 11 (2007), 250–270 | DOI | MR | Zbl

[3] Anderson G. D., Sugawa T., Vamanamurthy M. K., Vuorinen M. K., Special functions and hyperbolic metric, Manuscript, 2007 | MR

[4] Anderson G. D., Vuorinen M. K., Zhang X., “Topics in special functions. III”, Analytic number theory, approximation theory, and special functions, Springer, New York, 2014, 297–345 | DOI | MR | Zbl

[5] Bhayo B. A., “On the inequalities for the volume of the unit ball $\Omega_n$ in $R^n$”, Probl. Anal. – Issues Anal., 4(22):2 (2015), 12–22 | DOI | MR | Zbl

[6] Borgwardt K. H., The Simplex Method, Springer, Berlin, 1987 | MR | Zbl

[7] Caraman P., n-dimensional quasiconformal (QCf) mappings, Editura Acad. Romvne, Bucharest; Abacus Press, Tunbridge Wells, Kent, 1974 | MR | Zbl

[8] Ignatenko A. S., Levitskii B. E., “Method of the Optimal Control in the Solution of a Variational Probem”, Science Journal of VolSU. Mathematics. Physics, 6(37) (2016), 28–39 (in Russian) | DOI

[9] Zhang H., “New bounds and asymptotic expansions for the volume of the unit ball in Rn based on Padé approximation”, Results Math., 77 (2022), 116, 1–15 | DOI | MR