A new generator of third-degree linear forms
Problemy analiza, Tome 13 (2024) no. 2, pp. 63-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper examines linear forms of the third-degree, i.e., when the associated Stieltjes function satisfies a cubic equation with polynomial coefficients. A generator for third-degree forms is constructed. In fact, we study the stability of the third-degree character under this transformation that generalizes the rational spectral transformation. Moreover, we prove the stability of third-degree linear forms under standard algebraic operations. Several illustrative examples are shown.
Keywords: Stieltjes function, third-degree forms
Mots-clés : orthogonal polynomials, rational spectral transformations.
@article{PA_2024_13_2_a3,
     author = {M. Khalfallah},
     title = {A new generator of third-degree linear forms},
     journal = {Problemy analiza},
     pages = {63--83},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a3/}
}
TY  - JOUR
AU  - M. Khalfallah
TI  - A new generator of third-degree linear forms
JO  - Problemy analiza
PY  - 2024
SP  - 63
EP  - 83
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a3/
LA  - en
ID  - PA_2024_13_2_a3
ER  - 
%0 Journal Article
%A M. Khalfallah
%T A new generator of third-degree linear forms
%J Problemy analiza
%D 2024
%P 63-83
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a3/
%G en
%F PA_2024_13_2_a3
M. Khalfallah. A new generator of third-degree linear forms. Problemy analiza, Tome 13 (2024) no. 2, pp. 63-83. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a3/

[1] Barhoumi N., Ben Salah I., “Characterizations of a special family of third-degree semi-classical forms of class one”, Integral Transforms Spec. Funct., 24 (2013), 280–288 | DOI | MR | Zbl

[2] Beghdadi D., Maroni P., “Second degree classical forms”, Indag. Math. (N. S.), 8 (1997), 439–452 | DOI | MR | Zbl

[3] Ben Salah I., “Third degree classical forms”, Appl. Numer. Math., 44 (2003), 433–447 | DOI | MR | Zbl

[4] Ben Salah I., Khalfallah M., “A description via second degree character of a family of quasi-symmetric forms”, Period. Math. Hung., 85 (2022), 81–108 | DOI | MR | Zbl

[5] Ben Salah I., Khalfallah M., “Third-degree semiclassical forms of class one arising from cubic decomposition”, Integral Transforms Spec. Funct., 31:9 (2020), 720–743 | DOI | MR | Zbl

[6] Ben Salah I., Marcellán F., Khalfallah M., “Second degree linear forms and semiclassical forms of class one. A case study”, Filomat, 36:3 (2022), 781–800 | DOI | MR

[7] Ben Salah I., Marcellán F., Khalfallah M., “Stability of Third Degree Linear Functionals and Rational Spectral Transformations”, Mediterr. J. Math., 19:4 (2022), 1–23 | DOI | MR | Zbl

[8] Ben Salah I., Maroni P., “The connection between self-associated two-dimensional vector functionals and third degree forms”, Adv. Comput. Math., 13:1 (2000), 51–77 | DOI | MR | Zbl

[9] Bueno M. I., Marcellán F., “Darboux transformation and perturbation of linear functionals”, Linear Algebra Appl., 384 (2004), 215–242 | DOI | MR | Zbl

[10] Castillo K., de Jesus M. N., Petronilho J., “On semiclassical orthogonal polynomials via polynomial mappings”, J Math Anal Appl., 455:2 (2017), 1801–1821 | DOI | MR | Zbl

[11] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl

[12] Geronimo J. S., Van Assche W., “Orthogonal polynomials on several intervals via a polynomial mapping”, Trans. Amer. Math. Soc., 308:2 (1988), 559–581 | DOI | MR | Zbl

[13] Khalfallah M., “A Description of Second Degree Semiclassical Forms of Class Two Arising Via Cubic Decomposition”, Mediterr. J. Math., 19:1 (2022), 30, 22 pp. | DOI | MR | Zbl

[14] Khalfallah M., “A description via third degree character of quasi-symmetric semiclassical forms of class two”, Period Math Hung., 86:1 (2023), 58–75 | DOI | MR | Zbl

[15] Khalfallah M., “Characterization theorem for strict third-degree semiclassical forms of class one obtained via cubic decomposition”, Z. Anal. Anwend., 42:1/2 (2023), 17–36 | DOI | MR

[16] Marcellán F., Khalfallah M., “On the characterizations of third-degree semiclassical forms via polynomial mappings”, Integral Transforms Spec. Funct., 34:1 (2023), 65–87 | DOI | MR | Zbl

[17] Maroni P., “An introduction to second degree forms”, Adv. Comput. Math., 3 (1995), 59–88 | DOI | MR | Zbl

[18] Maroni P., Fonctions eulériennes. Polynômes orthogonaux classiques, A54v1, 1994, 30 pp.

[19] Maroni P., “Tchebychev forms and their perturbed forms as second degree forms”, Special functions (Torino, 1993), Ann. Numer. Math., 2, no. 1–4, 1995, 123–143 | MR | Zbl

[20] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their applications, IMACS, Proc. (Erice, 1990), Ann. Comput. Appl. Math., 9, 1991, 95–130 | MR | Zbl

[21] Yoon G., “Darboux transforms and orthogonal polynomials”, Bull. Korean Math. Soc., 39 (2002), 359–376 | DOI | MR | Zbl

[22] Zhedanov A., “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math., 85 (1997), 67–86 | DOI | MR | Zbl