Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_2_a2, author = {S. Jbeli}, title = {A new characterization of \boldmath$\symbol{113}${-Chebyshev} polynomials of the second kind}, journal = {Problemy analiza}, pages = {49--62}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/} }
S. Jbeli. A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind. Problemy analiza, Tome 13 (2024) no. 2, pp. 49-62. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/
[1] Atakishiyeva M., Atakishiyev N., “On discrete $q$-extension of Chebyshev polynomials”, Commun. Math. Anal., 14:2 (2013), 1–12 | MR | Zbl
[2] Aloui B., “Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator”, Ramanujan J., 2018, no. 45, 475–481 | DOI | MR | Zbl
[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period Math Hung., 76 (2018), 126–132 | DOI | MR | Zbl
[4] Bouanani A., Khériji L., Tounsi MI., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expositiones Mathematicae, 28:4 (2010), 325–336 | DOI | MR | Zbl
[5] Bouras B., Habbachi Y., Marcellán F., “Characterizations of the Symmetric $T_{(\theta, q)}$-Classical Orthogonal $q$-Polynomials”, Mediterranean Journal Of Mathematics, 19:2) (2022) | DOI | MR | Zbl
[6] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl
[7] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl
[8] Ercan E., Cetin M., Tuglu N., “Incomplete q-Chebyshev polynomials”, Filomat, 32:10 (2018), 3599–3607 | DOI | MR | Zbl
[9] Jbeli S., Description of the symmetric $H_q$-Laguerre-Hahn orthogonal $q$-polynomials of class one, Period Math Hung, 2024 | DOI
[10] Hahn W., “Über die Jacobischen polynome und zwei verwandte polynomk-lassen”, Math. Z., 39 (1935), 634–638 | DOI | MR | Zbl
[11] Hahn W., “Über Orthogonalpolynome, die linearen Funktionalgleichungen gengen”, Lecture Notes in Mathematics, 1985, 16–35 | DOI | MR | Zbl
[12] Kizilates C, Tuǧlu N, Çekim B., “On the $(p, q)$-Chebyshev polynomials and related polynomials”, Mathematics, 7:136 (2019), 1–12
[13] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI | MR
[14] Koornwinder T.H., “Lowering and raising operators for some special orthogonal polynomials”, Jack, Hall-Littlewood and Macdonald Polynomials, Contemporary Mathematics, 417, 2006 | MR | Zbl
[15] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their applications, IMACS, Proc. (Erice, 1990), Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 95–130 | MR | Zbl
[16] Maroni P., “Variations around classical orthogonal polynomials. Connected problems”, Journal Of Computational And Applied Mathematics, 48:1-2 (1993), 133–155 | DOI | MR | Zbl
[17] Maroni P, Mejri M., “The $I_{(q,\omega)}$-classical orthogonal polynomials”, Appl. Numer. Math., 43:4 (2002), 423–458 | DOI | MR | Zbl
[18] Mejri M., “$q$-Chebyshev polynomials and their $q$-classical characters”, Probl. Anal. – Issues Anal., 11(29):1 (2022), 81–101 | DOI | MR | Zbl
[19] Souissi J., “Characterization of polynomials via a raising operator”, Probl. Anal. – Issues Anal., 13(31):1 (2024), 71–81 | DOI | MR