A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
Problemy analiza, Tome 13 (2024) no. 2, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we introduce the notion of $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials, where $\mathcal{U}_{(q,\mu)}$ is the degree raising shift operator defined by $\mathcal{U}_{(q,\mu)}:=x(xH_q+q^{-1}I_{\mathcal{P}})+\mu H_q,$ where $\mu$ is a nonzero free parameter, $I_{\mathcal{P}}$ represents the identity operator on the space of polynomials $\mathcal{P}$, and $H_q$ is the $q$-derivative one. We show that the scaled $q$-Chebychev polynomials of the second kind ${\hat{U}}_{n}(x, q), n\geq0$, are the only $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials.
Mots-clés : orthogonal $q$-polynomials
Keywords: $q$-derivative operator, $q$-Chebyshev polynomials, raising operator.
@article{PA_2024_13_2_a2,
     author = {S. Jbeli},
     title = {A new characterization of \boldmath$\symbol{113}${-Chebyshev} polynomials of the second kind},
     journal = {Problemy analiza},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/}
}
TY  - JOUR
AU  - S. Jbeli
TI  - A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
JO  - Problemy analiza
PY  - 2024
SP  - 49
EP  - 62
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/
LA  - ru
ID  - PA_2024_13_2_a2
ER  - 
%0 Journal Article
%A S. Jbeli
%T A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
%J Problemy analiza
%D 2024
%P 49-62
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/
%G ru
%F PA_2024_13_2_a2
S. Jbeli. A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind. Problemy analiza, Tome 13 (2024) no. 2, pp. 49-62. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/

[1] Atakishiyeva M., Atakishiyev N., “On discrete $q$-extension of Chebyshev polynomials”, Commun. Math. Anal., 14:2 (2013), 1–12 | MR | Zbl

[2] Aloui B., “Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator”, Ramanujan J., 2018, no. 45, 475–481 | DOI | MR | Zbl

[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period Math Hung., 76 (2018), 126–132 | DOI | MR | Zbl

[4] Bouanani A., Khériji L., Tounsi MI., “Characterization of $q$-Dunkl Appell symmetric orthogonal $q$-polynomials”, Expositiones Mathematicae, 28:4 (2010), 325–336 | DOI | MR | Zbl

[5] Bouras B., Habbachi Y., Marcellán F., “Characterizations of the Symmetric $T_{(\theta, q)}$-Classical Orthogonal $q$-Polynomials”, Mediterranean Journal Of Mathematics, 19:2) (2022) | DOI | MR | Zbl

[6] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl

[7] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl

[8] Ercan E., Cetin M., Tuglu N., “Incomplete q-Chebyshev polynomials”, Filomat, 32:10 (2018), 3599–3607 | DOI | MR | Zbl

[9] Jbeli S., Description of the symmetric $H_q$-Laguerre-Hahn orthogonal $q$-polynomials of class one, Period Math Hung, 2024 | DOI

[10] Hahn W., “Über die Jacobischen polynome und zwei verwandte polynomk-lassen”, Math. Z., 39 (1935), 634–638 | DOI | MR | Zbl

[11] Hahn W., “Über Orthogonalpolynome, die linearen Funktionalgleichungen gengen”, Lecture Notes in Mathematics, 1985, 16–35 | DOI | MR | Zbl

[12] Kizilates C, Tuǧlu N, Çekim B., “On the $(p, q)$-Chebyshev polynomials and related polynomials”, Mathematics, 7:136 (2019), 1–12

[13] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI | MR

[14] Koornwinder T.H., “Lowering and raising operators for some special orthogonal polynomials”, Jack, Hall-Littlewood and Macdonald Polynomials, Contemporary Mathematics, 417, 2006 | MR | Zbl

[15] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their applications, IMACS, Proc. (Erice, 1990), Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 95–130 | MR | Zbl

[16] Maroni P., “Variations around classical orthogonal polynomials. Connected problems”, Journal Of Computational And Applied Mathematics, 48:1-2 (1993), 133–155 | DOI | MR | Zbl

[17] Maroni P, Mejri M., “The $I_{(q,\omega)}$-classical orthogonal polynomials”, Appl. Numer. Math., 43:4 (2002), 423–458 | DOI | MR | Zbl

[18] Mejri M., “$q$-Chebyshev polynomials and their $q$-classical characters”, Probl. Anal. – Issues Anal., 11(29):1 (2022), 81–101 | DOI | MR | Zbl

[19] Souissi J., “Characterization of polynomials via a raising operator”, Probl. Anal. – Issues Anal., 13(31):1 (2024), 71–81 | DOI | MR