A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
Problemy analiza, Tome 13 (2024) no. 2, pp. 49-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we introduce the notion of $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials, where $\mathcal{U}_{(q,\mu)}$ is the degree raising shift operator defined by $\mathcal{U}_{(q,\mu)}:=x(xH_q+q^{-1}I_{\mathcal{P}})+\mu H_q,$ where $\mu$ is a nonzero free parameter, $I_{\mathcal{P}}$ represents the identity operator on the space of polynomials $\mathcal{P}$, and $H_q$ is the $q$-derivative one. We show that the scaled $q$-Chebychev polynomials of the second kind ${\hat{U}}_{n}(x, q), n\geq0$, are the only $\mathcal{U}_{(q,\mu)}$-classical orthogonal polynomials.
Mots-clés : orthogonal $q$-polynomials
Keywords: $q$-derivative operator, $q$-Chebyshev polynomials, raising operator.
@article{PA_2024_13_2_a2,
     author = {S. Jbeli},
     title = {A new characterization of \boldmath$\symbol{113}${-Chebyshev} polynomials of the second kind},
     journal = {Problemy analiza},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/}
}
TY  - JOUR
AU  - S. Jbeli
TI  - A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
JO  - Problemy analiza
PY  - 2024
SP  - 49
EP  - 62
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/
LA  - ru
ID  - PA_2024_13_2_a2
ER  - 
%0 Journal Article
%A S. Jbeli
%T A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind
%J Problemy analiza
%D 2024
%P 49-62
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/
%G ru
%F PA_2024_13_2_a2
S. Jbeli. A new characterization of \boldmath$\symbol{113}$-Chebyshev polynomials of the second kind. Problemy analiza, Tome 13 (2024) no. 2, pp. 49-62. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a2/