Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
Problemy analiza, Tome 13 (2024) no. 2, pp. 25-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

As the homogeneous Triebel–Lizorkin space $\dot F^{s}_{p, q}$ and the space $BMO$ are defined modulo polynomials and constants, respectively, we prove that $BMO$ coincides with the realized space of $\dot F^{0}_{\infty, 2}$ and cannot be directly identified with $\dot F^{0}_{\infty, 2}$. In case $p\infty$, we also prove that the realized space of $\dot F^{n/p}_{p, q}$ is strictly embedded into $BMO$. Then we deduce other results in this paper, that are extensions to homogeneous and inhomogeneous Besov spaces, $\dot B^{s}_{p, q}$ and $B^{s}_{p, q}$, respectively. We show embeddings between $BMO$ and the classical Besov space $ B^{0}_{\infty, \infty}$ in the first case and the realized spaces of $\dot B^{0}_{\infty, 2}$ and $\dot B^{0}_{\infty, \infty}$ in the second one. On the other hand, as an application, we discuss the acting of the Riesz operator $\mathcal{I}_{\beta}$ on $BMO$ space, where we obtain embeddings related to realized versions of $\dot B^{\beta}_{\infty, 2}$ and $\dot B^{\beta}_{\infty, \infty}$.
Keywords: $BMO$ functions, realizations, Triebel–Lizorkin spaces.
Mots-clés : Besov spaces
@article{PA_2024_13_2_a1,
     author = {B. Gheribi and M. Moussai},
     title = {Some embeddings related to homogeneous {Triebel--Lizorkin} spaces and the $BMO$ functions},
     journal = {Problemy analiza},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/}
}
TY  - JOUR
AU  - B. Gheribi
AU  - M. Moussai
TI  - Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
JO  - Problemy analiza
PY  - 2024
SP  - 25
EP  - 48
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/
LA  - en
ID  - PA_2024_13_2_a1
ER  - 
%0 Journal Article
%A B. Gheribi
%A M. Moussai
%T Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
%J Problemy analiza
%D 2024
%P 25-48
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/
%G en
%F PA_2024_13_2_a1
B. Gheribi; M. Moussai. Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions. Problemy analiza, Tome 13 (2024) no. 2, pp. 25-48. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/

[1] Benallia M., Moussai M., “Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences”, Ufa Math. J., 11:4 (2019), 115–130 | DOI | MR | Zbl

[2] Benallia M., Moussai M., “Inequalities of Gagliardo-Nirenberg type in realized homogeneous Besov and Triebel–Lizorkin spaces”, Math. Rep. (Bucur.), 22(72):1 (2020), 19–39 | MR | Zbl

[3] Bissar S., Moussai M., “Pointwise multiplication in the realized homogeneous Besov and Triebel–Lizorkin spaces”, Probl. Anal. Issues Anal., 7(25):1 (2018), 3–22 | DOI | MR | Zbl

[4] Bourdaud G., “Réalisations des espaces de Besov homogènes”, Ark. Mat., 26:1 (1988), 41–54 | DOI | MR | Zbl

[5] Bourdaud G., Analyse Fonctionnelle dans l'Espace Euclidien, Pub. Math. Univ. Paris 7, 23, 2ième édition, 1995 ; 1'ère edition, 1986 | MR | MR | Zbl

[6] Bourdaud G., Ce qu'il faut savoir sur les espaces de Besov, Paris, 2009

[7] Bourdaud G., “Realizations of homogeneous Besov and Lizorkin-Triebel spaces”, Math. Nachr., 286:5-6 (2013), 476–491 | DOI | MR | Zbl

[8] Bourdaud G., Moussai M., Sickel W., “Composition operators on Lizorkin-Triebel spaces”, J. Funct. Anal., 259:5 (2010), 1098–1128 | DOI | MR | Zbl

[9] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129:3-4 (1972), 137–193 | DOI | MR | Zbl

[10] Frazier M., Jawerth B., “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl

[11] Jawerth B., “Some observations on Besov and Lizorkin-Triebel spaces”, Math. Scand., 40:1 (1977), 94–104 | DOI | MR | Zbl

[12] Lemarié-Rieusset P. G., Recent Developments in the Navier-Stokes Problem, Research Notes in Mathematics, 431, Hall/CRC, Chapman, 2002 | DOI | MR | Zbl

[13] Moussai M., “Realizations of homogeneous Besov and Triebel–Lizorkin spaces and an application to pointwise multipliers”, Anal. Appl. (Singap.), 13:2 (2015), 149–183 | DOI | MR | Zbl

[14] Moussai M., “Characterizations of realized homogeneous Besov and Triebel–Lizorkin spaces via differences”, Appl. Math. J. Chinese Univ. Ser. B, 33:2 (2018), 188–208 | DOI | MR | Zbl

[15] Moussai M., “Some Hardy-type estimates in realized homogeneous Besov and Triebel–Lizorkin spaces”, Ann. Fac. Sci. Toulouse Math. (6), 29:1 (2020), 39–55 | DOI | MR | Zbl

[16] Peetre J., New Thoughts on Besov Spaces, Duke Univ. Math. Series I, Durham, N.C., 1976 | MR | Zbl

[17] Sickel W., Triebel H., “Hölder inequalities and sharp embeddings in function spaces of $B^s_{pq}$ and $F^s_{pq}$ type”, Z. Anal. Anwendungen, 14:1 (1995), 105–140 | DOI | MR | Zbl

[18] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton U.P., 1993 | MR | Zbl

[19] Stein E. M., Zygmund A., “Boundedness of translation invariant operators on Hölder spaces and $L^p$-spaces”, Ann. of Math. (2), 85:2 (1967), 337–349 | DOI | MR | Zbl

[20] Strichartz R. S., “Bounded mean oscillation and Sobolev spaces”, Indiana Univ. Math. J., 29:4 (1980), 539–558 | DOI | MR | Zbl

[21] Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983 | DOI | MR | Zbl

[22] Yang D., Yuan W., “Function spaces of Besov-type and Triebel–Lizorkin-type – a survey”, Appl. Math. J. Chinese Univ. Ser. B, 28:4 (2013), 405–426 | DOI | MR | Zbl