Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_2_a1, author = {B. Gheribi and M. Moussai}, title = {Some embeddings related to homogeneous {Triebel--Lizorkin} spaces and the $BMO$ functions}, journal = {Problemy analiza}, pages = {25--48}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/} }
B. Gheribi; M. Moussai. Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions. Problemy analiza, Tome 13 (2024) no. 2, pp. 25-48. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/
[1] Benallia M., Moussai M., “Realization of homogeneous Triebel–Lizorkin spaces with $p=\infty $ and characterizations via differences”, Ufa Math. J., 11:4 (2019), 115–130 | DOI | MR | Zbl
[2] Benallia M., Moussai M., “Inequalities of Gagliardo-Nirenberg type in realized homogeneous Besov and Triebel–Lizorkin spaces”, Math. Rep. (Bucur.), 22(72):1 (2020), 19–39 | MR | Zbl
[3] Bissar S., Moussai M., “Pointwise multiplication in the realized homogeneous Besov and Triebel–Lizorkin spaces”, Probl. Anal. Issues Anal., 7(25):1 (2018), 3–22 | DOI | MR | Zbl
[4] Bourdaud G., “Réalisations des espaces de Besov homogènes”, Ark. Mat., 26:1 (1988), 41–54 | DOI | MR | Zbl
[5] Bourdaud G., Analyse Fonctionnelle dans l'Espace Euclidien, Pub. Math. Univ. Paris 7, 23, 2ième édition, 1995 ; 1'ère edition, 1986 | MR | MR | Zbl
[6] Bourdaud G., Ce qu'il faut savoir sur les espaces de Besov, Paris, 2009
[7] Bourdaud G., “Realizations of homogeneous Besov and Lizorkin-Triebel spaces”, Math. Nachr., 286:5-6 (2013), 476–491 | DOI | MR | Zbl
[8] Bourdaud G., Moussai M., Sickel W., “Composition operators on Lizorkin-Triebel spaces”, J. Funct. Anal., 259:5 (2010), 1098–1128 | DOI | MR | Zbl
[9] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129:3-4 (1972), 137–193 | DOI | MR | Zbl
[10] Frazier M., Jawerth B., “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl
[11] Jawerth B., “Some observations on Besov and Lizorkin-Triebel spaces”, Math. Scand., 40:1 (1977), 94–104 | DOI | MR | Zbl
[12] Lemarié-Rieusset P. G., Recent Developments in the Navier-Stokes Problem, Research Notes in Mathematics, 431, Hall/CRC, Chapman, 2002 | DOI | MR | Zbl
[13] Moussai M., “Realizations of homogeneous Besov and Triebel–Lizorkin spaces and an application to pointwise multipliers”, Anal. Appl. (Singap.), 13:2 (2015), 149–183 | DOI | MR | Zbl
[14] Moussai M., “Characterizations of realized homogeneous Besov and Triebel–Lizorkin spaces via differences”, Appl. Math. J. Chinese Univ. Ser. B, 33:2 (2018), 188–208 | DOI | MR | Zbl
[15] Moussai M., “Some Hardy-type estimates in realized homogeneous Besov and Triebel–Lizorkin spaces”, Ann. Fac. Sci. Toulouse Math. (6), 29:1 (2020), 39–55 | DOI | MR | Zbl
[16] Peetre J., New Thoughts on Besov Spaces, Duke Univ. Math. Series I, Durham, N.C., 1976 | MR | Zbl
[17] Sickel W., Triebel H., “Hölder inequalities and sharp embeddings in function spaces of $B^s_{pq}$ and $F^s_{pq}$ type”, Z. Anal. Anwendungen, 14:1 (1995), 105–140 | DOI | MR | Zbl
[18] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton U.P., 1993 | MR | Zbl
[19] Stein E. M., Zygmund A., “Boundedness of translation invariant operators on Hölder spaces and $L^p$-spaces”, Ann. of Math. (2), 85:2 (1967), 337–349 | DOI | MR | Zbl
[20] Strichartz R. S., “Bounded mean oscillation and Sobolev spaces”, Indiana Univ. Math. J., 29:4 (1980), 539–558 | DOI | MR | Zbl
[21] Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983 | DOI | MR | Zbl
[22] Yang D., Yuan W., “Function spaces of Besov-type and Triebel–Lizorkin-type – a survey”, Appl. Math. J. Chinese Univ. Ser. B, 28:4 (2013), 405–426 | DOI | MR | Zbl