Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
Problemy analiza, Tome 13 (2024) no. 2, pp. 25-48

Voir la notice de l'article provenant de la source Math-Net.Ru

As the homogeneous Triebel–Lizorkin space $\dot F^{s}_{p, q}$ and the space $BMO$ are defined modulo polynomials and constants, respectively, we prove that $BMO$ coincides with the realized space of $\dot F^{0}_{\infty, 2}$ and cannot be directly identified with $\dot F^{0}_{\infty, 2}$. In case $p\infty$, we also prove that the realized space of $\dot F^{n/p}_{p, q}$ is strictly embedded into $BMO$. Then we deduce other results in this paper, that are extensions to homogeneous and inhomogeneous Besov spaces, $\dot B^{s}_{p, q}$ and $B^{s}_{p, q}$, respectively. We show embeddings between $BMO$ and the classical Besov space $ B^{0}_{\infty, \infty}$ in the first case and the realized spaces of $\dot B^{0}_{\infty, 2}$ and $\dot B^{0}_{\infty, \infty}$ in the second one. On the other hand, as an application, we discuss the acting of the Riesz operator $\mathcal{I}_{\beta}$ on $BMO$ space, where we obtain embeddings related to realized versions of $\dot B^{\beta}_{\infty, 2}$ and $\dot B^{\beta}_{\infty, \infty}$.
Keywords: $BMO$ functions, realizations, Triebel–Lizorkin spaces.
Mots-clés : Besov spaces
@article{PA_2024_13_2_a1,
     author = {B. Gheribi and M. Moussai},
     title = {Some embeddings related to homogeneous {Triebel--Lizorkin} spaces and the $BMO$ functions},
     journal = {Problemy analiza},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/}
}
TY  - JOUR
AU  - B. Gheribi
AU  - M. Moussai
TI  - Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
JO  - Problemy analiza
PY  - 2024
SP  - 25
EP  - 48
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/
LA  - en
ID  - PA_2024_13_2_a1
ER  - 
%0 Journal Article
%A B. Gheribi
%A M. Moussai
%T Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
%J Problemy analiza
%D 2024
%P 25-48
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/
%G en
%F PA_2024_13_2_a1
B. Gheribi; M. Moussai. Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions. Problemy analiza, Tome 13 (2024) no. 2, pp. 25-48. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a1/