On complete Riesz--Fischer sequences in a Hilbert space
Problemy analiza, Tome 13 (2024) no. 1, pp. 124-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $\{f_n\}_{n=1}^{\infty}$ is a complete Riesz–Fischer sequence in a separable Hilbert space $H$, then $$ T:=\{f\in H\colon \sum |\langle f, f_n\rangle |^2\infty\} $$ is closed in $H$ if and only if $\{f_n\}_{n=1}^{\infty}$ has a biorthogonal Riesz sequence. If the latter is also complete in $H$, then $\{f_n\}_{n=1}^{\infty}$ is a Riesz basis for $H$.
Keywords: Riesz–Fischer sequences, Bessel sequences, Riesz sequences, Riesz bases, completeness.
Mots-clés : biorthogonal sequences
@article{PA_2024_13_1_a7,
     author = {E. Zikkos},
     title = {On complete {Riesz--Fischer} sequences in a {Hilbert} space},
     journal = {Problemy analiza},
     pages = {124--131},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/}
}
TY  - JOUR
AU  - E. Zikkos
TI  - On complete Riesz--Fischer sequences in a Hilbert space
JO  - Problemy analiza
PY  - 2024
SP  - 124
EP  - 131
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/
LA  - en
ID  - PA_2024_13_1_a7
ER  - 
%0 Journal Article
%A E. Zikkos
%T On complete Riesz--Fischer sequences in a Hilbert space
%J Problemy analiza
%D 2024
%P 124-131
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/
%G en
%F PA_2024_13_1_a7
E. Zikkos. On complete Riesz--Fischer sequences in a Hilbert space. Problemy analiza, Tome 13 (2024) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/