On complete Riesz--Fischer sequences in a Hilbert space
Problemy analiza, Tome 13 (2024) no. 1, pp. 124-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $\{f_n\}_{n=1}^{\infty}$ is a complete Riesz–Fischer sequence in a separable Hilbert space $H$, then $$ T:=\{f\in H\colon \sum |\langle f, f_n\rangle |^2\infty\} $$ is closed in $H$ if and only if $\{f_n\}_{n=1}^{\infty}$ has a biorthogonal Riesz sequence. If the latter is also complete in $H$, then $\{f_n\}_{n=1}^{\infty}$ is a Riesz basis for $H$.
Keywords: Riesz–Fischer sequences, Bessel sequences, Riesz sequences, Riesz bases, completeness.
Mots-clés : biorthogonal sequences
@article{PA_2024_13_1_a7,
     author = {E. Zikkos},
     title = {On complete {Riesz--Fischer} sequences in a {Hilbert} space},
     journal = {Problemy analiza},
     pages = {124--131},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/}
}
TY  - JOUR
AU  - E. Zikkos
TI  - On complete Riesz--Fischer sequences in a Hilbert space
JO  - Problemy analiza
PY  - 2024
SP  - 124
EP  - 131
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/
LA  - en
ID  - PA_2024_13_1_a7
ER  - 
%0 Journal Article
%A E. Zikkos
%T On complete Riesz--Fischer sequences in a Hilbert space
%J Problemy analiza
%D 2024
%P 124-131
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/
%G en
%F PA_2024_13_1_a7
E. Zikkos. On complete Riesz--Fischer sequences in a Hilbert space. Problemy analiza, Tome 13 (2024) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/

[1] Casazza P., Christensen O., Li S., Lindner A., “Riesz-Fischer sequences and lower frame bounds”, Z. Anal. Anwendungen, 21:2 (2002), 305–314 | DOI | MR | Zbl

[2] Christensen O., An introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI | MR

[3] Heil C., A basis theory primer. Applied and Numerical Harmonic Analysis, Expanded edn., Birkhäuser/Springer, New York, 2011 | DOI | MR

[4] Levin B. Ya., Lectures on Entire Functions, Amer. Math. Soc., Providence, R.I., 1996 | MR | Zbl

[5] Redheffer R. M., Young R. M., “Completeness and Basis Properties of Complex Exponentials”, Trans. Amer. Math. Soc., 277:1 (1983), 93–111 | DOI | MR | Zbl

[6] Seip K., “On the connection between exponential bases and certain related sequences in $L^2(-\pi,\pi)$”, J. Funct. Anal., 130:1 (1995), 131–160 | DOI | MR | Zbl

[7] Stoeva D. T., “On a Characterization of Riesz Bases via Biorthogonal Sequences”, J. Fourier Anal. Appl., 26:4 (2020), 67 | DOI | MR

[8] Young R. M., “On complete biorthogonal systems”, Proc. Amer. Math. Soc., 83:3 (1981), 537–540 | DOI | MR | Zbl

[9] Young R. M., An introduction to Nonharmonic Fourier Series, Revised first edition, Academic Press, Inc., San Diego, CA, 2001 | MR | Zbl

[10] Zikkos E., “Characterizing Riesz Bases via Biorthogonal Bessel sequences”, Carpathian Math. Publ., 15:2 (2023), 377–380 | DOI | MR