Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_1_a7, author = {E. Zikkos}, title = {On complete {Riesz--Fischer} sequences in a {Hilbert} space}, journal = {Problemy analiza}, pages = {124--131}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/} }
E. Zikkos. On complete Riesz--Fischer sequences in a Hilbert space. Problemy analiza, Tome 13 (2024) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a7/
[1] Casazza P., Christensen O., Li S., Lindner A., “Riesz-Fischer sequences and lower frame bounds”, Z. Anal. Anwendungen, 21:2 (2002), 305–314 | DOI | MR | Zbl
[2] Christensen O., An introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI | MR
[3] Heil C., A basis theory primer. Applied and Numerical Harmonic Analysis, Expanded edn., Birkhäuser/Springer, New York, 2011 | DOI | MR
[4] Levin B. Ya., Lectures on Entire Functions, Amer. Math. Soc., Providence, R.I., 1996 | MR | Zbl
[5] Redheffer R. M., Young R. M., “Completeness and Basis Properties of Complex Exponentials”, Trans. Amer. Math. Soc., 277:1 (1983), 93–111 | DOI | MR | Zbl
[6] Seip K., “On the connection between exponential bases and certain related sequences in $L^2(-\pi,\pi)$”, J. Funct. Anal., 130:1 (1995), 131–160 | DOI | MR | Zbl
[7] Stoeva D. T., “On a Characterization of Riesz Bases via Biorthogonal Sequences”, J. Fourier Anal. Appl., 26:4 (2020), 67 | DOI | MR
[8] Young R. M., “On complete biorthogonal systems”, Proc. Amer. Math. Soc., 83:3 (1981), 537–540 | DOI | MR | Zbl
[9] Young R. M., An introduction to Nonharmonic Fourier Series, Revised first edition, Academic Press, Inc., San Diego, CA, 2001 | MR | Zbl
[10] Zikkos E., “Characterizing Riesz Bases via Biorthogonal Bessel sequences”, Carpathian Math. Publ., 15:2 (2023), 377–380 | DOI | MR