Littlewood--Paley $g_{\lambda}^*$-function characterizations of Musielak--Orlicz Hardy spaces on spaces of homogeneous type
Problemy analiza, Tome 13 (2024) no. 1, pp. 100-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $({\mathcal X}, d, \mu)$ be a space of homogeneous type, in the sense of Coifman and Weiss, and $\varphi\colon\ \mathcal{X}\times[0, \infty)\rightarrow[0, \infty)$ satisfy that, for almost every $x\in\mathcal{X}$, $\varphi(x, \cdot)$ is an Orlicz function and that $\varphi(\cdot, t)$ is a Muckenhoupt weight uniformly in $t\in[0, \infty)$. In this article, by using the aperture estimate of Littlewood–Paley auxiliary functions on the Musielak–Orlicz space $L^{\varphi}(\mathcal{X})$, we obtain the Littlewood–Paley $g_{\lambda}^*$-function characterization of Musielak–Orlicz Hardy space $H^{\varphi}(\mathcal{X})$. Particularly, the range of $\lambda$ coincides with the best-known one.
Keywords: space of homogeneous type, Musielak–Orlicz Hardy space, Littlewood–Paley auxiliary function, $g_{\lambda}^*$-function.
@article{PA_2024_13_1_a6,
     author = {X. Yan},
     title = {Littlewood--Paley $g_{\lambda}^*$-function characterizations of {Musielak--Orlicz} {Hardy} spaces on spaces of homogeneous type},
     journal = {Problemy analiza},
     pages = {100--123},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a6/}
}
TY  - JOUR
AU  - X. Yan
TI  - Littlewood--Paley $g_{\lambda}^*$-function characterizations of Musielak--Orlicz Hardy spaces on spaces of homogeneous type
JO  - Problemy analiza
PY  - 2024
SP  - 100
EP  - 123
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a6/
LA  - en
ID  - PA_2024_13_1_a6
ER  - 
%0 Journal Article
%A X. Yan
%T Littlewood--Paley $g_{\lambda}^*$-function characterizations of Musielak--Orlicz Hardy spaces on spaces of homogeneous type
%J Problemy analiza
%D 2024
%P 100-123
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a6/
%G en
%F PA_2024_13_1_a6
X. Yan. Littlewood--Paley $g_{\lambda}^*$-function characterizations of Musielak--Orlicz Hardy spaces on spaces of homogeneous type. Problemy analiza, Tome 13 (2024) no. 1, pp. 100-123. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a6/

[1] Auscher P., Hytönen T., “Orthonormal bases of regular wavelets in spaces of homogeneous type”, Appl. Comput. Harmon. Anal., 34:2 (2013), 266–296 | DOI | MR | Zbl

[2] Bonami A., Grellier S., Ky L. D., “Paraproducts and products of functions in ${\rm BMO} ({\mathbb R}^n)$ and $H^1({\mathbb R}^n)$ through wavelets”, J. Math. Pures Appl. (9), 97:3 (2012), 230–241 | DOI | MR | Zbl

[3] Bonami A., Iwaniec T., Jones P., Zinsmeister M., “On the product of functions in ${\rm BMO} $ and $H^1$”, Ann. Inst. Fourier (Grenoble), 57:5 (2007), 1405–1439 | DOI | MR | Zbl

[4] Calderón A.-P., Torchinsky A., “Parabolic maximal functions associated with a distribution. II”, Adv. Math., 24:1 (1977), 101–171 | DOI | MR | Zbl

[5] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[6] Duong X.-T., Yan L., “Hardy spaces of spaces of homogeneous type”, Proc. Amer. Math. Soc., 131:10 (2003), 3181–3189 | DOI | MR | Zbl

[7] Fu X., Ma T., Yang D., “Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type”, Ann. Acad. Sci. Fenn. Math., 45:1 (2020), 343–410 | DOI | MR | Zbl

[8] Grafakos L., Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Third edition, Springer, New York, 2014 | DOI | MR | Zbl

[9] Han Y., Müller D., Yang D., “Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type”, Math. Nachr., 279:13-14 (2006), 1505–1537 | DOI | MR | Zbl

[10] Han Y., Müller D., Yang D., “A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces”, Abstr. Appl. Anal., 2008, 893409, 250 | DOI | MR

[11] He Z., Han Y., Li J., Liu L., Yang D., Yuan W., “A complete real-variable theory of Hardy spaces on spaces of homogeneous type”, J. Fourier Anal. Appl., 25:5 (2019), 2197–2267 | DOI | MR | Zbl

[12] He Z., Liu L., Yang D., Yuan W., “New Calderón reproducing formulae with exponential decay on spaces of homogeneous type”, Sci. China Math., 62:2 (2019), 283–350 | DOI | MR | Zbl

[13] He Z., Yang D., Yuan W., “Real-variable characterizations of local Hardy spaces on spaces of homogeneous type”, Math. Nachr., 294:5 (2021), 900–955 | DOI | MR | Zbl

[14] Ho K.-P., “Sublinear operators on weighted Hardy spaces with variable exponents”, Forum Math., 31:3 (2019), 607–617 | DOI | MR | Zbl

[15] Hou S., Yang D., Yang S., “Lusin area function and molecular characterizations of Musielak–Orlicz Hardy spaces and their applications”, Commun. Contemp. Math., 15:6 (2013), 1350029, 37 pp. | DOI | MR | Zbl

[16] Hou S., Yang D., Yang S., “Musielak–Orlicz ${\rm BMO} $-type spaces associated with generalized approximations to the identity”, Acta Math. Sin. (Engl. Ser.), 30:11 (2014), 1917–1962 | DOI | MR | Zbl

[17] Hytönen T., Kairema A., “Systems of dyadic cubes in a doubling metric space”, Colloq. Math., 126:1 (2012), 1–33 | DOI | MR | Zbl

[18] Iwaniec T., Onninen J., “$\mathcal{H}^1$-estimates of Jacobians by subdeterminants”, Math. Ann., 324:2 (2002), 341–358 | DOI | MR | Zbl

[19] Janson S., “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation”, Duke Math. J., 47:4 (1980), 959–982 | DOI | MR | Zbl

[20] Ky L. D., “Bilinear decompositions and commutators of singular integral operators”, Trans. Amer. Math. Soc., 365:6 (2013), 2931–2958 | DOI | MR | Zbl

[21] Ky L. D., “New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators”, Integral Equations Operator Theory, 78:1 (2014), 115–150 | DOI | MR | Zbl

[22] Li B., Fan X., Yang D., “Littlewood–Paley characterizations of anisotropic Hardy spaces of Musielak–Orlicz type”, Taiwanese J. Math., 19:1 (2015), 279–314 | DOI | MR | Zbl

[23] Li B., Yang D., Yuan W., “Anisotropic Hardy spaces of Musielak–Orlicz type with applications to boundedness of sublinear operators”, The Scientific World Journal, 2014, 306214, 19 pp. | DOI | MR

[24] Liang Y., Huang J., Yang D., “New real-variable characterizations of Musielak–Orlicz Hardy spaces”, J. Math. Anal. Appl., 395:1 (2012), 413–428 | DOI | MR | Zbl

[25] Nakai E., Sawano Y., “Hardy spaces with variable exponents and generalized Campanato spaces”, J. Funct. Anal., 262:9 (2012), 3665–3748 | DOI | MR | Zbl

[26] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl

[27] Stein E. M., Weiss G., “On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces”, Acta Math., 103:1-2 (1960), 25–62 | DOI | MR | Zbl

[28] Strömberg J.-O., Torchinsky A., Weighted Hardy Spaces, Lecture Notes in Mathematics, 1381, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[29] Yan X., He Z., Yang D., Yuan W., “Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Characterizations of maximal functions, decompositions, and dual spaces”, Math. Nachr., 296:7 (2023), 3056–3116 | DOI | MR | Zbl

[30] Yang D., Liang Y., Ky L. D., Real-Variable Theory of Musielak–Orlicz Hardy Spaces, Lecture Notes in Mathematics, 2182, Springer-Verlag, Cham, 2017 | DOI | MR | Zbl

[31] Yang D., Yuan W., Zhang Y., “Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces”, J. Funct. Anal., 280:2 (2021), 108796, 74 pp. | DOI | MR | Zbl