Characterization of polynomials via a raising operator
Problemy analiza, Tome 13 (2024) no. 1, pp. 71-81

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates a first-order linear differential operator $\mathcal{J}_\xi$, where $\xi=(\xi_1, \xi_2) \in \mathbb{C}^2\setminus{(0, 0)}$, and $D:=\frac{d}{dx}$. The operator is defined as $\mathcal{J}_{\xi}:=x(xD+\mathbb{I})+\xi_1\mathbb{I}+\xi_2 D$, with $\mathbb{I}$ representing the identity on the space of polynomials with complex coefficients. The focus is on exploring the $\mathcal{J}_\xi$-classical orthogonal polynomials and analyzing properties of the resulting sequences. This work contributes to the understanding of these polynomials and their characteristics.
Keywords: СЃlassical polynomials, second-order differential equation, raising operator.
Mots-clés : orthogonal polynomials
@article{PA_2024_13_1_a4,
     author = {J. Souissi},
     title = {Characterization of polynomials via a raising operator},
     journal = {Problemy analiza},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a4/}
}
TY  - JOUR
AU  - J. Souissi
TI  - Characterization of polynomials via a raising operator
JO  - Problemy analiza
PY  - 2024
SP  - 71
EP  - 81
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a4/
LA  - en
ID  - PA_2024_13_1_a4
ER  - 
%0 Journal Article
%A J. Souissi
%T Characterization of polynomials via a raising operator
%J Problemy analiza
%D 2024
%P 71-81
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a4/
%G en
%F PA_2024_13_1_a4
J. Souissi. Characterization of polynomials via a raising operator. Problemy analiza, Tome 13 (2024) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a4/