Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_3_a6, author = {H. Kalita}, title = {The weak drop property and the de la {Vall\'ee} {Poussin} {Theorem}}, journal = {Problemy analiza}, pages = {105--118}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a6/} }
H. Kalita. The weak drop property and the de la Vall\'ee Poussin Theorem. Problemy analiza, Tome 12 (2023) no. 3, pp. 105-118. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a6/
[1] Alexopoulos J., “De la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces”, Quaest Math, 17:2 (1994), 231–248 | DOI | MR | Zbl
[2] D. Barcenas, Finol C. E., “On vector measures. uniform integrability and Orlicz spaces”, Vector Measures, Integration and Related Topics, Oper. Theory Adv. Appl., 201, Birkhäuser Verlag, Basel, 2009, 51–57 | DOI | MR
[3] B. A. Bhayo, Yin L., “On the generalized Convexity and concavity”, Probl. Anal. Issues Anal., 4(22):1 (2015), 3–10 | DOI | MR | Zbl
[4] J. Banaś, “On drop property and nearly uniformly smooth Banach spaces, Nonlinear Analysis”, Theory. M. Appl, 14:41 (1990), 927–933 | DOI | MR | Zbl
[5] D. Caponetti, D. L. Piazza, V. Kadets, “Description of the limit set of Henstock-Kurzweil integral sums of vector-valued functions”, J. Math. Anal. Appl, 421 (2015), 1151–1162 | DOI | MR | Zbl
[6] Giles R. J., Sims B., Yorke C. A., “On the drop and weak drop prop erties for a Banach space”, Bull. Austral. Math. Soc., 41 (1990), 503–507 | DOI | MR | Zbl
[7] B. Hazarika, H. Kalita, “Henstock-Orlicz space and its dense space”, Asian Eur. J. Math., 14:2 (2020), 1–17 | DOI | MR
[8] H. Kalita, B. Hazarika, “Countable additivity of Henstock-Dunford In tegrable functions and Orlicz Space”, Anal. Math. Phys, 11:2 (2021), 1–13 | DOI | MR
[9] A. M. Krasnoselskii, Rutickii B. Ya., Convex functions and Orlicz Spaces, Noorhoff Ltd, Groningen, 1961 | MR | Zbl
[10] G. A. Kostianko, “The limit set of the Henstock-Kurzweil integral sums of a vector-valued function”, Kharkiv Univ. Vestnik. Ser. Math., Appl. Math. Mech, 1081(68) (2013), 10–20 | MR | Zbl
[11] S. C. Kubrusly, “Denseness of sets of supercyclic vectors”, Proc. Math. Royal Irish Acad., 120A:1 (2020), 7–18 | DOI | MR
[12] K. P. Lee, “Some Remarks of Drop Property”, Proc. Amer. Math. Soc., 115 (1992), 441–446 | DOI | MR
[13] J. A. W. Luxemburg, Banach Function Spaces, Ph.D. Dissertation, Technische Hogeschool te Delft, 1955 | MR
[14] P. Laurençot, “Weak Compactness Techniques and Coagulation Equations”, Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics, 2126, eds. Banasiak J., Mokhtar-Kharroubi M., 2015 | DOI | MR | Zbl
[15] D. Pallaschke, S. Rolewicz, Foundations of Mathematical Optimization, Math. Appl., 388, Kluwer, Dordrecht, 1997 | MR | Zbl
[16] V. Yu. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, T. Prob. Appl., 1 (1956), 157–214 | DOI | MR
[17] M. M. Rao, Z. Ren, The Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991 | MR
[18] Rolewicz S., “On drop property”, Studio Math., 85 (1987), 27–35 | MR
[19] H. J. Qiu, “On weak drop property and quasi-weak drop property”, Studio Math., 156:2 (2002), 189–202 | DOI | MR
[20] S. S. Volosivets, “Approximation by linear means of Fourier series and realization functions in weighted Orlicz spaces”, Probl. Anal. Issues Anal., 29:2 (2022), 106–118 | DOI | MR | Zbl