The weak drop property and the de la Vall\'ee Poussin Theorem
Problemy analiza, Tome 12 (2023) no. 3, pp. 105-118

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a closed bounded convex set is uniformly integrable if and only if it has the weak drop property. We extract the weakly compact subsets of the Henstock integrable functions on the H-Orlicz spaces with the weak drop property via de la Vallée Poussin Theorem.
Keywords: Young's function, weak drop property, H-Orlicz spaces.
@article{PA_2023_12_3_a6,
     author = {H. Kalita},
     title = {The weak drop property and the de la {Vall\'ee} {Poussin} {Theorem}},
     journal = {Problemy analiza},
     pages = {105--118},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a6/}
}
TY  - JOUR
AU  - H. Kalita
TI  - The weak drop property and the de la Vall\'ee Poussin Theorem
JO  - Problemy analiza
PY  - 2023
SP  - 105
EP  - 118
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a6/
LA  - en
ID  - PA_2023_12_3_a6
ER  - 
%0 Journal Article
%A H. Kalita
%T The weak drop property and the de la Vall\'ee Poussin Theorem
%J Problemy analiza
%D 2023
%P 105-118
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_3_a6/
%G en
%F PA_2023_12_3_a6
H. Kalita. The weak drop property and the de la Vall\'ee Poussin Theorem. Problemy analiza, Tome 12 (2023) no. 3, pp. 105-118. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a6/