On the inverse problem of the Bitsadze--Samarskii type for a fractional parabolic equation
Problemy analiza, Tome 12 (2023) no. 3, pp. 20-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the inverse problem of the Bitsadze–Samarsky type is studied for a fractional order equation with a Hadamard–Caputo fractional differentiation operator. The problem is solved using the spectral method. The spectral aspects of the obtained problem are investigated, root functions are found, and their basis property is proved. The conjugate problem is investigated. The uniqueness and existence theorems for a regular solution to this problem are proved.
Keywords: Hadamard–Caputo fractional operator, Riesz basis, Le Roy function, inverse problem.
@article{PA_2023_12_3_a1,
     author = {R. R. Ashurov and B. J. Kadirkulov and B. Kh. Turmetov},
     title = {On the inverse problem of the {Bitsadze--Samarskii} type for a fractional parabolic equation},
     journal = {Problemy analiza},
     pages = {20--40},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a1/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - B. J. Kadirkulov
AU  - B. Kh. Turmetov
TI  - On the inverse problem of the Bitsadze--Samarskii type for a fractional parabolic equation
JO  - Problemy analiza
PY  - 2023
SP  - 20
EP  - 40
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a1/
LA  - en
ID  - PA_2023_12_3_a1
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A B. J. Kadirkulov
%A B. Kh. Turmetov
%T On the inverse problem of the Bitsadze--Samarskii type for a fractional parabolic equation
%J Problemy analiza
%D 2023
%P 20-40
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_3_a1/
%G en
%F PA_2023_12_3_a1
R. R. Ashurov; B. J. Kadirkulov; B. Kh. Turmetov. On the inverse problem of the Bitsadze--Samarskii type for a fractional parabolic equation. Problemy analiza, Tome 12 (2023) no. 3, pp. 20-40. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a1/