Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_2_a1, author = {S. H. Hadi and M. Darus}, title = {A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)${-Bernardi} integral operator}, journal = {Problemy analiza}, pages = {17--36}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/} }
TY - JOUR AU - S. H. Hadi AU - M. Darus TI - A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator JO - Problemy analiza PY - 2023 SP - 17 EP - 36 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/ LA - en ID - PA_2023_12_2_a1 ER -
S. H. Hadi; M. Darus. A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator. Problemy analiza, Tome 12 (2023) no. 2, pp. 17-36. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/
[1] Aouf M. K., Moustafa A. O., Adwan E. A., “Subclass of multivalent harmonic functions defined by Wright generalized hypergeometric functions”, Journal of Complex Analysis, 2013 (2013), 397428, 7 pp. | DOI | MR | Zbl
[2] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9 (1984), 3–25 | DOI | MR | Zbl
[3] Çakmak S., Yalç{\i}n S., Alt{\i}nkaya S., “A new class of Salágeán-type multivalent harmonic functions defined by subordination”, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1899–1904 | DOI | MR
[4] Ebadian A., Shams S., Wang Z-G., Sun Y., “A class of multivalent analytic functions involving the generalized Jung-Kim-Srivastava operator”, Acta Universitatis Apulensis, 18 (2009) | MR
[5] Hadi S. H., Darus M., Park C., Lee J. R., “Some geometric properties of multivalent functions associated with a new generalized $q$-Mittag-Leffler function”, AIMS Math., 7:7 (2022), 11772–11783 | DOI | MR
[6] Hadi S. H., Darus M., “$(p,q)$-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with $(p,q)$-Hurwitz zeta function”, Turk. J. Math., 46:6 (2022), 25 | DOI | MR
[7] Ismail M. E. H., Merkes E., Styer D., “A generalization of starlike functions”, Complex Var. Theory Appl. Int. J., 14:1–4 (1990), 77–84 | DOI | MR | Zbl
[8] Jackson F. H., “On $q$-difference equations”, Am. J. Math., 32:4 (1910), 305–314 https://www.jstor.org/stable/2370183 | DOI
[9] Jackson F. H., “On $q$-definite integrals”, Q. J. Pure Appl. Math., 41:15 (1910), 193–203
[10] Jahangiri J. M., Kim Y. C., Srivastava H. M., “Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform”, Integral Transforms Spec. Funct., 14:4 (2003), 237–242 | DOI | MR | Zbl
[11] Jacek D., Yalç{\i}n S., Alt{\i}nkaya S., “Subclasses of harmonic univalent functions associated with generalized Ruscheweyh operator”, Publications de l'Institut Mathematique, 106:120 (2019), 19–28 | DOI | MR | Zbl
[12] Khan M. F., “Certain new class of harmonic functions involving quantum calculus”, J. Funct. Spaces, 2022 (2022), 6996639, 8 pp. | DOI | MR | Zbl
[13] Lewy H., “On the non-vanishing of the Jacobian in certain one-to-one mappings”, Bull. Amer. Math. Soc., 42:10 (1936), 689–692 | DOI | MR | Zbl
[14] Long P., Tang H., Wang W., “Functional inequalities for several classes of $q$-starlike and $q$-convex type analytic and multivalent functions using a generalized Bernardi integral operator”, AIMS Math., 6:2 (2021), 1191–1208 | DOI | MR | Zbl
[15] Noor K. I., Riaz S., Noor M. A., “On $q$-Bernardi integral operator”, TWMS J. Pure Appl. Math., 8:1 (2017), 3–11 | MR | Zbl
[16] Owa S., Güney H. Ö., “New applications of the Bernardi integral operator”, Mathematics, 8:7 (2020), 1180 | DOI
[17] Shah S. A., Noor K. I., “Study on the $q$-analogue of a certain family of linear operators”, Turk. J. Math., 43:6 (2019), 2707–2714 | DOI | MR | Zbl
[18] Shah S. A., Maitlo A. A., Soomro M. A., Noor K. I., “On new subclass of harmonic univalent functions associated with modified $q$-operator”, Int. J. Anal. Appl., 19:6 (2021), 826–835 | DOI
[19] Srivastava H. M., Hadi S. H., Darus M., “Some subclasses of $p$-valent $\gamma$-uniformly type $q$-starlike and $q$-convex functions defined by using a certain generalized $q$-Bernardi integral operator”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 50 pp. | DOI | MR
[20] Wang Z.-G., Li Q.-G., Jiang Y.-P., “Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator”, Integral Transform Spec. Funct., 21:3 (2010), 221–234 | DOI | MR | Zbl