A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator
Problemy analiza, Tome 12 (2023) no. 2, pp. 17-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the aid of $q$-calculus, this paper introduces a new generalized $(p, q)$-Bernardi integral operator $\mathcal{B}_{n,q}^{p}f(z)$. Then, we define a new subclass of harmonic $(p, q)$-starlike functions of complex order associated with the operator $\mathcal{B}_{n,q}^{p}f(z)$. For this new subclass, a necessary and sufficient condition, compact and convex combination theorems, a distortion theorem, and extreme points are investigated. Finally, we discuss the weight mean theorem for functions belonging to this class. This research highlights the significant connections between the results presented in this study and previous works.
Keywords: harmonic functions, q)$-Bernardi integral operator, distortion bounds, extreme points, convex combination.
Mots-clés : $q$-calculus, $(p
@article{PA_2023_12_2_a1,
     author = {S. H. Hadi and M. Darus},
     title = {A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)${-Bernardi} integral operator},
     journal = {Problemy analiza},
     pages = {17--36},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/}
}
TY  - JOUR
AU  - S. H. Hadi
AU  - M. Darus
TI  - A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator
JO  - Problemy analiza
PY  - 2023
SP  - 17
EP  - 36
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/
LA  - en
ID  - PA_2023_12_2_a1
ER  - 
%0 Journal Article
%A S. H. Hadi
%A M. Darus
%T A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator
%J Problemy analiza
%D 2023
%P 17-36
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/
%G en
%F PA_2023_12_2_a1
S. H. Hadi; M. Darus. A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator. Problemy analiza, Tome 12 (2023) no. 2, pp. 17-36. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a1/

[1] Aouf M. K., Moustafa A. O., Adwan E. A., “Subclass of multivalent harmonic functions defined by Wright generalized hypergeometric functions”, Journal of Complex Analysis, 2013 (2013), 397428, 7 pp. | DOI | MR | Zbl

[2] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9 (1984), 3–25 | DOI | MR | Zbl

[3] Çakmak S., Yalç{\i}n S., Alt{\i}nkaya S., “A new class of Salágeán-type multivalent harmonic functions defined by subordination”, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1899–1904 | DOI | MR

[4] Ebadian A., Shams S., Wang Z-G., Sun Y., “A class of multivalent analytic functions involving the generalized Jung-Kim-Srivastava operator”, Acta Universitatis Apulensis, 18 (2009) | MR

[5] Hadi S. H., Darus M., Park C., Lee J. R., “Some geometric properties of multivalent functions associated with a new generalized $q$-Mittag-Leffler function”, AIMS Math., 7:7 (2022), 11772–11783 | DOI | MR

[6] Hadi S. H., Darus M., “$(p,q)$-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with $(p,q)$-Hurwitz zeta function”, Turk. J. Math., 46:6 (2022), 25 | DOI | MR

[7] Ismail M. E. H., Merkes E., Styer D., “A generalization of starlike functions”, Complex Var. Theory Appl. Int. J., 14:1–4 (1990), 77–84 | DOI | MR | Zbl

[8] Jackson F. H., “On $q$-difference equations”, Am. J. Math., 32:4 (1910), 305–314 https://www.jstor.org/stable/2370183 | DOI

[9] Jackson F. H., “On $q$-definite integrals”, Q. J. Pure Appl. Math., 41:15 (1910), 193–203

[10] Jahangiri J. M., Kim Y. C., Srivastava H. M., “Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform”, Integral Transforms Spec. Funct., 14:4 (2003), 237–242 | DOI | MR | Zbl

[11] Jacek D., Yalç{\i}n S., Alt{\i}nkaya S., “Subclasses of harmonic univalent functions associated with generalized Ruscheweyh operator”, Publications de l'Institut Mathematique, 106:120 (2019), 19–28 | DOI | MR | Zbl

[12] Khan M. F., “Certain new class of harmonic functions involving quantum calculus”, J. Funct. Spaces, 2022 (2022), 6996639, 8 pp. | DOI | MR | Zbl

[13] Lewy H., “On the non-vanishing of the Jacobian in certain one-to-one mappings”, Bull. Amer. Math. Soc., 42:10 (1936), 689–692 | DOI | MR | Zbl

[14] Long P., Tang H., Wang W., “Functional inequalities for several classes of $q$-starlike and $q$-convex type analytic and multivalent functions using a generalized Bernardi integral operator”, AIMS Math., 6:2 (2021), 1191–1208 | DOI | MR | Zbl

[15] Noor K. I., Riaz S., Noor M. A., “On $q$-Bernardi integral operator”, TWMS J. Pure Appl. Math., 8:1 (2017), 3–11 | MR | Zbl

[16] Owa S., Güney H. Ö., “New applications of the Bernardi integral operator”, Mathematics, 8:7 (2020), 1180 | DOI

[17] Shah S. A., Noor K. I., “Study on the $q$-analogue of a certain family of linear operators”, Turk. J. Math., 43:6 (2019), 2707–2714 | DOI | MR | Zbl

[18] Shah S. A., Maitlo A. A., Soomro M. A., Noor K. I., “On new subclass of harmonic univalent functions associated with modified $q$-operator”, Int. J. Anal. Appl., 19:6 (2021), 826–835 | DOI

[19] Srivastava H. M., Hadi S. H., Darus M., “Some subclasses of $p$-valent $\gamma$-uniformly type $q$-starlike and $q$-convex functions defined by using a certain generalized $q$-Bernardi integral operator”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 50 pp. | DOI | MR

[20] Wang Z.-G., Li Q.-G., Jiang Y.-P., “Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator”, Integral Transform Spec. Funct., 21:3 (2010), 221–234 | DOI | MR | Zbl