Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_1_a6, author = {N. P. Volchkova and Vit. V. Volchkov}, title = {Recovering the laplacian from centered means on balls and spheres of fixed radius}, journal = {Problemy analiza}, pages = {96--117}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a6/} }
TY - JOUR AU - N. P. Volchkova AU - Vit. V. Volchkov TI - Recovering the laplacian from centered means on balls and spheres of fixed radius JO - Problemy analiza PY - 2023 SP - 96 EP - 117 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a6/ LA - en ID - PA_2023_12_1_a6 ER -
N. P. Volchkova; Vit. V. Volchkov. Recovering the laplacian from centered means on balls and spheres of fixed radius. Problemy analiza, Tome 12 (2023) no. 1, pp. 96-117. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a6/
[1] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Analyse Math., 54:1 (1990), 259–287 | DOI | MR | Zbl
[2] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Several Complex Variables V, Chap. 1, Encyclopedia of Math. Sciences, 54, 1993, 1–108 | DOI
[3] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternique - Cas des deux boules”, J. Complex Variables, 43 (2000), 29–57 | DOI | MR | Zbl
[4] Blaschke W., “Ein Mittelwersatz und eine kennzeichnende Eigenschaft des logaritmischen Potentials”, Ber. Ver. Sächs Akad. Wiss. Leipzig, 68 (1916), 3–7
[5] Brown L., Schreiber B. M., Taylor B. A., “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier, Grenoble, 23:3 (1973), 125–154 | DOI | MR | Zbl
[6] Casey S. D., Walnut D. F., “Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms”, Siam Review, 36:4 (1994), 537–577 | DOI | MR | Zbl
[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, v. II, McGraw-Hill, New York, 1953, 316 pp. | MR
[8] Flatto L., “The converse of Gauss theorem for harmonic functions”, J. Different. Equat., 1 (1965), 483–490 | DOI | MR | Zbl
[9] Helgason S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Amer. Math. Soc., New York, 2000, 667 pp. | MR | Zbl
[10] Hörmander L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, New York, 2003, 440 pp. | DOI | MR | Zbl
[11] Ikromov I.A., “Recovering a function from its spherical means”, Russian Mathematical Surveys, 42:5 (1987), 169–170 | DOI | MR | Zbl
[12] Kuznetsov N., “Mean value properties of harmonic functions and related topics (a survey)”, J. Math. Sci., 242:2 (2019), 177–199 | DOI | MR | Zbl
[13] Netuka I., Veselý J., “Mean value property and harmonic functions”, Classical and Modern Potential Theory and Applications, NATO ASI Series, 430, Springer, Dordrecht, 1994, 359–398 | MR
[14] Nicolesco M., Les Fonctions Polyharmoniques, Hermann, Paris, 1936
[15] Pizzetti P., “Sulla media dei valori che una funzione del punti dello spazio assume alla superficie di una sfera”, Rend. Lincei, Ser. 5, 18 (1909), 182–185
[16] Poritsky H., “Generalizations of the Gauss law of the spherical mean”, Trans. Amer. Math. Soc., 43 (1938), 199–225 | DOI | MR | Zbl
[17] Priwaloff J., “Sur les fonctions harmoniques”, Mat. Sb., 32:3 (1925), 464–471
[18] Timan A. F., Trofimov V. N., Introduction to the Theory of Harmonic Functions, Nauka, M., 1968, 208 pp. (in Russian) | MR
[19] Volchkov V. V., “Theorems on two radii on bounded domains of Euclidean spaces”, Differ. Equ., 30:10 (1994), 1587–1592 | MR | Zbl
[20] Volchkov V. V., “New two-radii theorems in the theory of harmonic functions”, Ivz. Math., 44:1 (1995), 181–192 | DOI | MR
[21] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009, 672 pp. | DOI | MR | Zbl
[22] Volchkov Vit. V., “On functions with given spherical means on symmetric spaces”, J. Math. Sci., 175:4 (2011), 402–412 | DOI | MR | Zbl
[23] Volchkov V. V., Volchkov Vit. V., “Spherical means on two-point homogeneous spaces and applications”, Ivz. Math., 77:2 (2013), 223–252 | DOI | MR | Zbl
[24] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl
[25] Volchkova N. P., Volchkov. Vit. V., “Deconvolution problem for indicators of segments”, Math. Notes NEFU, 26:3 (2019), 3–14 | DOI | MR
[26] Zalcman L., “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl