On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
Problemy analiza, Tome 12 (2023) no. 1, pp. 87-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $c$, $\alpha$, $\beta \in \mathbb{R}$ be such that $1$, $\alpha>1$ is irrational and with bounded partial quotients, $\beta\in [0, \alpha)$. In this paper, we study asymptotic behaviour of the summations of the form $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor n^c \rfloor)}{ \lfloor n^c \rfloor}$ and $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor \alpha n+\beta \rfloor)}{\lfloor \alpha n+\beta \rfloor}$, where $f$ is the Euler totient function $\phi$, Dedekind function $\Psi$, sum-of-divisors function $\sigma$, or the alternating sum-of-divisors function $\sigma_{alt}$.
Keywords: arithmetic function, Beatty sequence, Piatetski–Shapiro sequence.
@article{PA_2023_12_1_a5,
     author = {T. Srichan},
     title = {On a sum involving certain arithmetic functions on {Piatetski--Shapiro} and {Beatty} sequences},
     journal = {Problemy analiza},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/}
}
TY  - JOUR
AU  - T. Srichan
TI  - On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
JO  - Problemy analiza
PY  - 2023
SP  - 87
EP  - 95
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/
LA  - en
ID  - PA_2023_12_1_a5
ER  - 
%0 Journal Article
%A T. Srichan
%T On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
%J Problemy analiza
%D 2023
%P 87-95
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/
%G en
%F PA_2023_12_1_a5
T. Srichan. On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences. Problemy analiza, Tome 12 (2023) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/

[1] Begunts A. V. and Goryashin D.V., “On the values of Beatty sequence in an arithmetic progression”, Chebyshevskii Sb., 21:1 (2020), 343–346 | DOI | MR | Zbl

[2] Bordellés O., Dai L., Heyman R., Pan H. and Shparlinski I. E., “On a sum involving the Euler function”, J. Number Theory, 202 (2019), 278–297 | DOI | MR | Zbl

[3] Cao X. and Zhai W., “The distribution of square-free numbers of the form $[n^ c]$”, J. Théor. Nombres Bordeaux, 10:2 (1998), 287–299 | DOI | MR | Zbl

[4] Deshouillers J. M., “A remark on cube-free numbers in Segal–Piatestki–Shapiro sequences”, Hardy-Ramanujan Journal, 41 (2019), 127–132 | MR

[5] Deshouillers J. M. and Luca F., “On the distribution of some means concerning the Euler function”, Funct. Approx. Comment. Math., 39:2 (2008), 335–344 | DOI | MR | Zbl

[6] Deshouillers J. M., Hassani M. and Nasiri–Zare M., On a question of Luca and Schinzel over Segal–Piatetski–Shapiro sequences, 2021, arXiv: 2104.11701 | Zbl

[7] Ma J., and Sun H., “On a sum involving certain arithmetic functions and the integral part function”, Ramanujan J., 2022 | DOI | MR

[8] Rieger R., “Remark on a paper of Stux concerning squarefree numbers in non-linear sequences”, Pac. J. Math., 78:1 (1978), 241–242 | DOI | MR | Zbl

[9] Srichan T., Tangsupphathawat P., “Square-full numbers in Piatetski-Shapiro sequences”, Ann. Math. du Quebec, 44:2 (2020), 385–391 | DOI | MR | Zbl

[10] Srichan T., “On the Distribution of $(k, r)$-Integers in Piatetski–Shapiro Sequences”, Czech. Math. J., 71:4 (2021), 1063–1070 | DOI | MR

[11] Stucky J., “The fractional sum of small arithmetic functions”, J. Number Theory, 238 (2022), 731–739 | DOI | MR

[12] Wu J., “Note on a paper by Bordellés, Dai, Heyman, Pan and Shparlinski”, Period. Math. Hungar, 80 (2020), 95–102 | DOI | MR