On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
Problemy analiza, Tome 12 (2023) no. 1, pp. 87-95

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $c$, $\alpha$, $\beta \in \mathbb{R}$ be such that $1$, $\alpha>1$ is irrational and with bounded partial quotients, $\beta\in [0, \alpha)$. In this paper, we study asymptotic behaviour of the summations of the form $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor n^c \rfloor)}{ \lfloor n^c \rfloor}$ and $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor \alpha n+\beta \rfloor)}{\lfloor \alpha n+\beta \rfloor}$, where $f$ is the Euler totient function $\phi$, Dedekind function $\Psi$, sum-of-divisors function $\sigma$, or the alternating sum-of-divisors function $\sigma_{alt}$.
Keywords: arithmetic function, Beatty sequence, Piatetski–Shapiro sequence.
@article{PA_2023_12_1_a5,
     author = {T. Srichan},
     title = {On a sum involving certain arithmetic functions on {Piatetski--Shapiro} and {Beatty} sequences},
     journal = {Problemy analiza},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/}
}
TY  - JOUR
AU  - T. Srichan
TI  - On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
JO  - Problemy analiza
PY  - 2023
SP  - 87
EP  - 95
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/
LA  - en
ID  - PA_2023_12_1_a5
ER  - 
%0 Journal Article
%A T. Srichan
%T On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences
%J Problemy analiza
%D 2023
%P 87-95
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/
%G en
%F PA_2023_12_1_a5
T. Srichan. On a sum involving certain arithmetic functions on Piatetski--Shapiro and Beatty sequences. Problemy analiza, Tome 12 (2023) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a5/