A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence
Problemy analiza, Tome 12 (2023) no. 1, pp. 72-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we introduce the $\alpha\beta$-statistical pointwise ideal convergence, $\alpha\beta$-statistical uniform ideal convergence, and $\alpha\beta$-equi-statistical ideal convergence for sequences of fuzzy-valued functions. With the help of some examples, we present the relationship between these convergence concepts. Moreover, we give the $\alpha\beta$-statistical ideal version of Egorov's theorem for the sequences of fuzzy valued measurable functions.
Keywords: Egorov's theorem, $\alpha\beta$-statistical pointwise ideal convergence, $\alpha\beta$-statistical uniform ideal convergence, $\alpha\beta$-statistical equi-ideal convergence.
@article{PA_2023_12_1_a4,
     author = {Sonali Sharma and Kuldip Raj},
     title = {A new approach to {Egorov's} theorem by means of $\alpha\beta$-statistical ideal convergence},
     journal = {Problemy analiza},
     pages = {72--86},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/}
}
TY  - JOUR
AU  - Sonali Sharma
AU  - Kuldip Raj
TI  - A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence
JO  - Problemy analiza
PY  - 2023
SP  - 72
EP  - 86
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/
LA  - ru
ID  - PA_2023_12_1_a4
ER  - 
%0 Journal Article
%A Sonali Sharma
%A Kuldip Raj
%T A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence
%J Problemy analiza
%D 2023
%P 72-86
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/
%G ru
%F PA_2023_12_1_a4
Sonali Sharma; Kuldip Raj. A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence. Problemy analiza, Tome 12 (2023) no. 1, pp. 72-86. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/

[1] Aktuğlu H., “Korovkin type approximation theorems proved via $\alpha\beta$-statistical convergence”, J. Comput. Appl. Math., 259 (2014), 174–181 | DOI | MR | Zbl

[2] Altin Y., Et M., Tripathy B. C., “On pointwise statistical convergence sequences of fuzzy mappings”, J. Fuzzy Math., 15 (2007), 425–433 | MR | Zbl

[3] Balcerzak M., Dems K., Komisarski A., “Statistical convergence and ideal convergence and ideal convergence for sequences of functions”, J. Math. Anal. Appl., 328 (2007), 715–729 | DOI | MR | Zbl

[4] Fast H., “Sur le convergence”, Colloq. Math., 2 (1951), 241–244 | DOI | MR | Zbl

[5] Gong Z., Zhang L., Zhu X., “The statistical convergence for sequences of fuzzy valued functions”, Inform. sci., 295 (2015), 182–195 | DOI | MR | Zbl

[6] Hazarika B., “Pointwise ideal convergence and uniformly ideal convergence of sequences of fuzzy valued functions”, J. Intell. Fuzzy Syst., 32 (2017), 2665–2677 | DOI | MR | Zbl

[7] Hazarika B., “On ideal convergence in measure for sequences of fuzzy valued functions”, J. Intell. Fuzzy Syst., 35 (2018), 5729–5740 | DOI

[8] Jasinski J., Reclaw I., “Ideal convergence of continuous functions”, Topol. Appl., 153 (2006), 3511–3518 | DOI | MR | Zbl

[9] Kişi O., Dündar E., “Lacunary statistical convergence in measure for sequences of fuzzy valued functions”, Konuralp J. Math., 8 (2020), 252–262 https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/31495/737163 | MR

[10] Kişi O., “Lacunary statistical convergence in measure for double sequences of fuzzy valued functions”, J. Math., 2021, 6655630 | DOI | MR | Zbl

[11] Kumar V., Kumar K., “On the ideal convergence of sequences of fuzzy numbers”, Information Sci., 178 (2008), 4670–4678 | DOI | MR | Zbl

[12] Kumar P., Kumar V., Bhatia S. S., “$\mathcal {I}$ and $\mathcal {I}^{\ast}$ convergence of multiple sequences of fuzzy numbers”, Bol. Soc. Paran. Mat., 33 (2015), 69–78 | DOI | MR | Zbl

[13] Kumar V., Kumar K., Sharma A., Sharma P., “On generalized Cauchy sequences of fuzzy numbers”, Atti Fond. “Giorgio Ronchi”, 65 (2010), 837–842

[14] Kumar V., Sharma A., Kumar K., Singh N., “On $I$-limit points and $I$-cluster points of sequences of fuzzy numbers”, Int. Math. Forum, 2 (2007), 2815–2822 | DOI | MR | Zbl

[15] Kostyrko P., Salát T., Wilczyśki W., “On $I$-convergence”, Real Anal. Exch., 26 (2000), 669–685 | DOI | MR

[16] Mursaleen M., Çakan C., Mohiuddine S. A., Savaş E., “Generalized statistical convergence and statistical core of double sequences”, Acta Math., 26 (2010), 2132–2144 | DOI | MR

[17] Matloka M., “Sequences of fuzzy numbers”, Busefal, 28 (1986), 28–37 | Zbl

[18] Steinhaus H., “Sur la convergence ordinaire et la convergence asymptotique”, Colloq. Math., 2 (1951), 73–74 | DOI | MR

[19] Tripathy B. C., Hazarika B., “Some $I$-convergent sequence spaces defined by Orlicz functions”, Acta Math. Appl. Sin., 27 (2011), 149–154 | DOI | MR | Zbl

[20] Zadeh L. A., “Fuzzy sets”, Inform. and Control, 8 (1965), 338–353 | DOI | MR | Zbl