A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence
Problemy analiza, Tome 12 (2023) no. 1, pp. 72-86

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we introduce the $\alpha\beta$-statistical pointwise ideal convergence, $\alpha\beta$-statistical uniform ideal convergence, and $\alpha\beta$-equi-statistical ideal convergence for sequences of fuzzy-valued functions. With the help of some examples, we present the relationship between these convergence concepts. Moreover, we give the $\alpha\beta$-statistical ideal version of Egorov's theorem for the sequences of fuzzy valued measurable functions.
Keywords: Egorov's theorem, $\alpha\beta$-statistical pointwise ideal convergence, $\alpha\beta$-statistical uniform ideal convergence, $\alpha\beta$-statistical equi-ideal convergence.
@article{PA_2023_12_1_a4,
     author = {Sonali Sharma and Kuldip Raj},
     title = {A new approach to {Egorov's} theorem by means of $\alpha\beta$-statistical ideal convergence},
     journal = {Problemy analiza},
     pages = {72--86},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/}
}
TY  - JOUR
AU  - Sonali Sharma
AU  - Kuldip Raj
TI  - A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence
JO  - Problemy analiza
PY  - 2023
SP  - 72
EP  - 86
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/
LA  - ru
ID  - PA_2023_12_1_a4
ER  - 
%0 Journal Article
%A Sonali Sharma
%A Kuldip Raj
%T A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence
%J Problemy analiza
%D 2023
%P 72-86
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/
%G ru
%F PA_2023_12_1_a4
Sonali Sharma; Kuldip Raj. A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence. Problemy analiza, Tome 12 (2023) no. 1, pp. 72-86. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a4/