Variable Lebesgue algebra on a Locally Compact group
Problemy analiza, Tome 12 (2023) no. 1, pp. 34-45

Voir la notice de l'article provenant de la source Math-Net.Ru

For a locally compact group $H$ with a left Haar measure, we study the variable Lebesgue algebra $\mathcal{L}^{p(\cdot)}(H)$ with respect to convolution. We show that if $\mathcal{L}^{p(\cdot)}(H)$ has a bounded exponent, then it contains a left approximate identity. We also prove a necessary and sufficient condition for $\mathcal{L}^{p(\cdot)}(H)$ to have an identity. We observe that a closed linear subspace of $\mathcal{L}^{p(\cdot)}(H)$ is a left ideal if and only if it is left translation invariant.
Mots-clés : variable Lebesgue space
Keywords: bounded exponent, approximate identity, Haar measure.
@article{PA_2023_12_1_a2,
     author = {P. Saha and B. Hazarika},
     title = {Variable {Lebesgue} algebra on a {Locally} {Compact} group},
     journal = {Problemy analiza},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/}
}
TY  - JOUR
AU  - P. Saha
AU  - B. Hazarika
TI  - Variable Lebesgue algebra on a Locally Compact group
JO  - Problemy analiza
PY  - 2023
SP  - 34
EP  - 45
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/
LA  - ru
ID  - PA_2023_12_1_a2
ER  - 
%0 Journal Article
%A P. Saha
%A B. Hazarika
%T Variable Lebesgue algebra on a Locally Compact group
%J Problemy analiza
%D 2023
%P 34-45
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/
%G ru
%F PA_2023_12_1_a2
P. Saha; B. Hazarika. Variable Lebesgue algebra on a Locally Compact group. Problemy analiza, Tome 12 (2023) no. 1, pp. 34-45. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/