Variable Lebesgue algebra on a Locally Compact group
Problemy analiza, Tome 12 (2023) no. 1, pp. 34-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a locally compact group $H$ with a left Haar measure, we study the variable Lebesgue algebra $\mathcal{L}^{p(\cdot)}(H)$ with respect to convolution. We show that if $\mathcal{L}^{p(\cdot)}(H)$ has a bounded exponent, then it contains a left approximate identity. We also prove a necessary and sufficient condition for $\mathcal{L}^{p(\cdot)}(H)$ to have an identity. We observe that a closed linear subspace of $\mathcal{L}^{p(\cdot)}(H)$ is a left ideal if and only if it is left translation invariant.
Mots-clés : variable Lebesgue space
Keywords: bounded exponent, approximate identity, Haar measure.
@article{PA_2023_12_1_a2,
     author = {P. Saha and B. Hazarika},
     title = {Variable {Lebesgue} algebra on a {Locally} {Compact} group},
     journal = {Problemy analiza},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/}
}
TY  - JOUR
AU  - P. Saha
AU  - B. Hazarika
TI  - Variable Lebesgue algebra on a Locally Compact group
JO  - Problemy analiza
PY  - 2023
SP  - 34
EP  - 45
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/
LA  - ru
ID  - PA_2023_12_1_a2
ER  - 
%0 Journal Article
%A P. Saha
%A B. Hazarika
%T Variable Lebesgue algebra on a Locally Compact group
%J Problemy analiza
%D 2023
%P 34-45
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/
%G ru
%F PA_2023_12_1_a2
P. Saha; B. Hazarika. Variable Lebesgue algebra on a Locally Compact group. Problemy analiza, Tome 12 (2023) no. 1, pp. 34-45. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a2/

[1] Cohn D. L., Measure theory, Second Edition, Birkhäuser, 2013 | MR | Zbl

[2] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue spaces: Foundations and harmonic analysis, Birkhäuser, Basel, 2013 | DOI | MR | Zbl

[3] Diening L., Harjulehto P., Hästö P., Ruzicka M., Lebesgue and Sobolev spaces with variable exponents, Springer, 2011 | MR | Zbl

[4] Edmunds D., Rákosník J., “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | DOI | MR | Zbl

[5] Rudin W., Real and Complex Analysis, Third edition, McGraw-Hill, Inc, 1987, 416 pp. | MR | Zbl

[6] Kováč O., and Rákosník J., “On Spaces $L^{p(x)} $ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | DOI | MR | Zbl

[7] Osancliol A., Öztop S., “Weighted Orlicz algebras on locally compact groups”, J. Aust. Math. Soc., 99:3 (2015), 399–414 | DOI | MR | Zbl

[8] Sadahiro S., “The $ L^p $-conjecture and Young's inequality”, Illinois J. Math., 34:3 (1990), 614–627 | DOI | MR | Zbl

[9] Samko S., “Convolution type operators in $L^{p(x)}$”, Integral Transform Spec. Funct., 7:1-2 (1998), 123–144 | DOI | MR | Zbl

[10] Sharapudinov I. I., “The topology of the space $L^p(t)([0, 1])$”, Mat. Zametki, 26:4 (1979), 613–632 | DOI | MR | Zbl

[11] Sharapudinov I. I., “Approximation of functions in the metric of the space $L^p(t)([a, b])$ and quadrature formulas”, Constructive function theory, 81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 189–193 | MR

[12] Sharapudinov I. I., “The basis property of the Haar system in the space $L^p(t)([0, 1])$ and the principle of localization in the mean”, Mat. Sb. (N.S.), 130:2 (1986), 275–283 | DOI | MR

[13] Sharapudinov I. I., “On the uniform boundedness in $L^p (p = p(x))$ of some families of convolution operators”, Mat. Zametki, 59:2 (1996), 205–212 | DOI | MR | Zbl

[14] Tsenov I. V., “Generalization of the problem of best approximation of a function in the space $L ^s$”, Uch. Zap. Dagestan. Gos. Univ., 7 (1961), 25–37

[15] Zhikov V. V., “Problems of convergence, duality, and averaging for a class of functionals of the calculus of variations”, Dokl. Akad. Nauk SSSR, 267:3 (1982), 524–528 | MR | Zbl

[16] Zhikov V.V., “Questions of convergence, duality and averaging for functionals of the calculus of variations”, Izv. Akad. Nauk SSSR Ser. Mat., 47:5 (1983), 961–998 | DOI | MR | Zbl

[17] Zhikov V. V., “Averaging of functionals of the calculus of variations and elasticity theory”, Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 675–710 | DOI | MR

[18] Zhikov V. V., “The Lavrent'ev efect and averaging of nonlinear variational problems”, Differentsial'nye Uravneniya, 279:1 (1991), 42–50 | MR

[19] Zhikov V. V., “Passage to the limit in nonlinear variational problems”, Mat. Sb., 183:8 (1992), 47–84 | DOI | MR

[20] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. Math. Phys., 2:3 (1994), 393–408 | DOI | MR | Zbl