Generalizations of certain well-known inequalities for rational functions
Problemy analiza, Tome 12 (2023) no. 1, pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we generalize and refine a result of Wali and Shah concerning the estimate of the derivative of the maximum modulus of rational functions with prescribed poles and restricted zeros. The obtained results generalize and sharpen some well-known inequalities for the derivative of rational functions besides the refinement of some polynomial inequalities.
Keywords: rational function, $s$-fold zeros, Bernstein-type inequality.
Mots-clés : polynomial
@article{PA_2023_12_1_a1,
     author = {M. Y. Mir and S. L. Wali and W. M. Shah},
     title = {Generalizations of certain well-known inequalities for rational functions},
     journal = {Problemy analiza},
     pages = {25--33},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a1/}
}
TY  - JOUR
AU  - M. Y. Mir
AU  - S. L. Wali
AU  - W. M. Shah
TI  - Generalizations of certain well-known inequalities for rational functions
JO  - Problemy analiza
PY  - 2023
SP  - 25
EP  - 33
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a1/
LA  - en
ID  - PA_2023_12_1_a1
ER  - 
%0 Journal Article
%A M. Y. Mir
%A S. L. Wali
%A W. M. Shah
%T Generalizations of certain well-known inequalities for rational functions
%J Problemy analiza
%D 2023
%P 25-33
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a1/
%G en
%F PA_2023_12_1_a1
M. Y. Mir; S. L. Wali; W. M. Shah. Generalizations of certain well-known inequalities for rational functions. Problemy analiza, Tome 12 (2023) no. 1, pp. 25-33. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a1/

[1] Aziz A., Dawood Q. M., “Inequalities for a polynomial and its derivative”, J. Approx. Theory, 54 (1988), 306–313 | DOI | MR | Zbl

[2] Aziz A., Mohammad Q. G., “Simple proof of a Theorem of Erdös and Lax”, Proc. Amer. Math. Soc., 80 (1980), 119–122 | MR | Zbl

[3] Aziz A., “A refinement of an inequality of S. Bernstein”, J. Math. Anal. and Appl., 142 (1989), 1–10 | DOI | MR

[4] Bernstein S. N., “Sur la limitation des dérivées des polynomes”, C. R. Acad. Sci. Paris, 190 (1930), 338–340

[5] Dubinin V. N., “Applications of the schwarz lemma to inequalities for entire functions with constraints on zeros”, J. of Math. Sci., 143 (2007), 3069–3076 | DOI | MR

[6] Kompaneets E. G, Starkov V. V., “On the smirnov type inequality for polynomials”, Math. notes, 111 (2022), 388–397 | DOI | MR | Zbl

[7] Kompaneets E. G., Starkov V. V., “Smirnov's Inequality for polynomials having zeros outside the unit disk”, Probl. Anal. Issues Anal., 10 (2021), 71–90 | DOI | MR | Zbl

[8] Lax P. D., “Proof of a conjecture of P. Erdös on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50 (1944), 509–513 | DOI | MR | Zbl

[9] Li X., Mohapatra R. N, Rodriguez R. S., “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc., 51 (1995), 523–531 | DOI | MR | Zbl

[10] Osserman R., “A sharp schwarz inequality on the boundary for functions regular in disk”, Proceedings of Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl

[11] Riesz M., “Eine trigonometriche interpolationsformel und einige Ungleichungen für Polynome”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354–68

[12] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, London Math. Soc. Monographs new series, 2002 | MR | Zbl

[13] Smirnoff V. I., “Sur quelques polynomes aux propriétés”, Trans. of the Kharkov. Math. Soc., 4:2 (1928), 67–72 (in French)

[14] Turán P., “Über die ableitung von polynomen”, Compos. Math., 7 (1939), 89–95 | MR | Zbl

[15] Wali S. L., Shah W. M., “Applications of the schwarz lemma to inequalities for rational functions with prescribed poles”, J. Anal., 25:1 (2017), 43–53 | DOI | MR | Zbl