Tangent approximation by solutions of the convolution equation
Problemy analiza, Tome 11 (2022) no. 3, pp. 125-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article for the first time studies the approximation of a function together with its derivatives on the real line by solutions of a multidimensional convolution equation of the form $$g\ast T=0,$$ where $T$ is a given compactly supported radial distribution other than a constant multiplied by the Dirac delta function at zero. The following analogue of the well-known Carleman's theorem on tangent approximation by entire functions is obtained: if $f\in C^k(\mathbb{R})$ for some $k\in\mathbb{Z}_+$ and for any $\nu\in\{0, \ldots, k\}$ there is a finite limit \begin{equation*} \displaystyle \underset{t \to +0 }\lim \left(\frac{d}{dt}\right)^{\nu}f(\mathrm{ln}t), \end{equation*} then for an arbitrary positive continuous function $\varepsilon(t)$ on $\mathbb{R}$ there exists an entire function $\Phi\colon\mathbb{C}^n\to \mathbb{C}$, such that $\Phi\big |_{\mathbb{R}^n}\ast T=0$ and \begin{equation*} \left|f^{(\nu)}(t)-\left(\frac{\partial}{\partial x_1}\right)^{\nu}\Phi(t, 0, \ldots, 0)\right|\varepsilon(e^t) \end{equation*} for all $t\in\mathbb{R}$, $\nu\in\{0, \ldots, k\}$ (Theorem 1). It is shown that when approximating a function on subsets of the real line that do not contain a neighborhood of the point $-\infty$, the condition for the existence of a limit in Theorem 1 can be omitted. In addition, the method of proving Theorem 1 allows one to obtain new results that are of interest for the theory of convolution equations of the indicated type. These are results about the growth of solutions (Corollary 3), on the distribution of values (Theorem 2), and also on the solvability of the interpolation problem for solutions of the convolution equation (Corollary 4).
Keywords: mean periodicity, Carleman's approximation theorem.
Mots-clés : convolution equation
@article{PA_2022_11_3_a8,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Tangent approximation by solutions of the convolution equation},
     journal = {Problemy analiza},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a8/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Tangent approximation by solutions of the convolution equation
JO  - Problemy analiza
PY  - 2022
SP  - 125
EP  - 142
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a8/
LA  - en
ID  - PA_2022_11_3_a8
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Tangent approximation by solutions of the convolution equation
%J Problemy analiza
%D 2022
%P 125-142
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_3_a8/
%G en
%F PA_2022_11_3_a8
V. V. Volchkov; Vit. V. Volchkov. Tangent approximation by solutions of the convolution equation. Problemy analiza, Tome 11 (2022) no. 3, pp. 125-142. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a8/

[1] Arakeljan N. U., “Refinement of one Keldysh theorem by asymptotic approximation by entire functions”, Dokl. Akad. Nauk SSSR, 125 (1959), 695–698 (in Russian) | MR | Zbl

[2] Arakeljan N. U., “The asymptotic approximation to entire functions in infinite regions”, Mat. Sb., 53:95 (1961), 515–538 (in Russian) | MR | Zbl

[3] Arakeljan N. U., “Uniform approximation by entire functions on unbounded continuums and an estimate of the order of its value”, DAN Arm. SSR, 34 (1962), 145–149 (in Russian) | MR | Zbl

[4] Arakeljan N. U., “Uniform approximation by entire functions with an estimate of their growth”, Sibirsk. Mat. Ž., 4 (1963), 977–999 (in Russian) | MR | Zbl

[5] Arakeljan N. U., “Uniform and asymptotic approximation by entire functions on unbounded closed sets”, Dokl. Akad. Nauk SSSR, 157 (1964), 9–11 (in Russian) | MR | Zbl

[6] Arakeljan N. U., “Uniform approximation on closed sets by entire functions”, Izv. Akad. Nauk SSSR, Ser. Mat., 28 (1964), 1187–1206 (in Russian) | MR | Zbl

[7] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Several Complex Variables V, Chap. 1, Encyclopedia of Math. Sciences, 54, 1993, 1–108 | DOI

[8] Fornæss J. E., Forstnerič F., Wold E. F., “Holomorphic approximation: the legacy of Weierstrass, Runge, Oka-Weil, and Mergelyan”, Advancements in Complex Analysis, Springer, Basel, 2020, 133–192 | MR | Zbl

[9] Fuchs W. H. J., Théorie de l'approximation des fonctions d'une variable complexe, Univ. de Montréal, 1968 | MR

[10] Gaier D., Vorlesungen über Approximation im Komplexen, Birkhäuser, Basel, 1980, 174 pp. | MR | Zbl

[11] Gauthier P. M., Hengartner W., “Complex approximation and simultaneous interpolation on closed sets”, Canad. J. Math., 29 (1977), 701–706 | DOI | MR | Zbl

[12] Gel'fond A. O., Calculus of finite differences, Nauka, M., 1967, 376 pp. (in Russian) | MR

[13] Helgason S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Amer. Math. Soc., New York, 2000, 667 pp. | MR | Zbl

[14] Hoischen L., “Approximation und Interpolation durch ganze Funktionen”, J. Approximation Theory, 15 (1975), 116–123 | DOI | MR | Zbl

[15] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, New York, 1990, 440 pp. ; v. II, 2005, 394 pp. | MR

[16] Kaplan W., “Approximation by entire functions”, Michigan Math. J., 3 (1955), 43–52 | DOI | MR

[17] Keldych M. V., “Sur la représentation par des séries de polynomes des fonctions d'une variable complexe dans de domaines fermés”, Mat. Sb., 16:58 (1945), 249–258 (in Russian) | MR | Zbl

[18] Mergelyan S. N., “Uniform approximations of functions of a complex variable”, Uspehi Matem. Nauk, 7:2(48) (1952), 31–122 (in Russian) | MR

[19] Nersesyan A. A., “Simultaneous tangent approximation of functions and their derivatives”, Izv. AN ArmSSR, Ser. Mat., 8 (1973), 464–473 (in Russian) | MR

[20] Nersesyan A. A., “Simultaneous tangent approximation theorem”, Izv. AN ArmSSR, Ser. Mat., 13 (1978), 442–447 (in Russian) | MR | Zbl

[21] Nersesyan A. A., “On uniform approximation with simultaneous interpolation by analytic functions”, Izv. AN ArmSSR, Ser. Mat., 15 (1980), 249–257 (in Russian) | MR | Zbl

[22] Rubel L. A., Venkateswaran S., “Simultaneous approximation and interpolation by entire functions”, Arch. Math., 27 (1976), 526–529 | DOI | MR | Zbl

[23] Sheinberg S., “Uniform approximation by entire functions”, J. Analyse Math., 29 (1976), 16–18 | DOI | MR

[24] Sinclair A., “$|\varepsilon(z)|$-closeness of approximation”, Pacific J. Math., 15 (1965), 1405–1413 | DOI | MR | Zbl

[25] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 2016, 312 pp. | MR

[26] Ter-Israelyan L. A., “Uniform and tangent approximation of functions that are holomorphic in an angle by meromorphic functions with an estimate of their growth”, Izv. AN ArmSSR, Ser. Mat., 6 (1971), 67–80 (in Russian) | MR | Zbl

[27] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003, 454 pp. | DOI | MR | Zbl

[28] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009, 672 pp. | DOI | MR | Zbl

[29] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl

[30] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, 1992, 185–194 | DOI | MR | Zbl

[31] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl