Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_3_a8, author = {V. V. Volchkov and Vit. V. Volchkov}, title = {Tangent approximation by solutions of the convolution equation}, journal = {Problemy analiza}, pages = {125--142}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a8/} }
V. V. Volchkov; Vit. V. Volchkov. Tangent approximation by solutions of the convolution equation. Problemy analiza, Tome 11 (2022) no. 3, pp. 125-142. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a8/
[1] Arakeljan N. U., “Refinement of one Keldysh theorem by asymptotic approximation by entire functions”, Dokl. Akad. Nauk SSSR, 125 (1959), 695–698 (in Russian) | MR | Zbl
[2] Arakeljan N. U., “The asymptotic approximation to entire functions in infinite regions”, Mat. Sb., 53:95 (1961), 515–538 (in Russian) | MR | Zbl
[3] Arakeljan N. U., “Uniform approximation by entire functions on unbounded continuums and an estimate of the order of its value”, DAN Arm. SSR, 34 (1962), 145–149 (in Russian) | MR | Zbl
[4] Arakeljan N. U., “Uniform approximation by entire functions with an estimate of their growth”, Sibirsk. Mat. Ž., 4 (1963), 977–999 (in Russian) | MR | Zbl
[5] Arakeljan N. U., “Uniform and asymptotic approximation by entire functions on unbounded closed sets”, Dokl. Akad. Nauk SSSR, 157 (1964), 9–11 (in Russian) | MR | Zbl
[6] Arakeljan N. U., “Uniform approximation on closed sets by entire functions”, Izv. Akad. Nauk SSSR, Ser. Mat., 28 (1964), 1187–1206 (in Russian) | MR | Zbl
[7] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Several Complex Variables V, Chap. 1, Encyclopedia of Math. Sciences, 54, 1993, 1–108 | DOI
[8] Fornæss J. E., Forstnerič F., Wold E. F., “Holomorphic approximation: the legacy of Weierstrass, Runge, Oka-Weil, and Mergelyan”, Advancements in Complex Analysis, Springer, Basel, 2020, 133–192 | MR | Zbl
[9] Fuchs W. H. J., Théorie de l'approximation des fonctions d'une variable complexe, Univ. de Montréal, 1968 | MR
[10] Gaier D., Vorlesungen über Approximation im Komplexen, Birkhäuser, Basel, 1980, 174 pp. | MR | Zbl
[11] Gauthier P. M., Hengartner W., “Complex approximation and simultaneous interpolation on closed sets”, Canad. J. Math., 29 (1977), 701–706 | DOI | MR | Zbl
[12] Gel'fond A. O., Calculus of finite differences, Nauka, M., 1967, 376 pp. (in Russian) | MR
[13] Helgason S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Amer. Math. Soc., New York, 2000, 667 pp. | MR | Zbl
[14] Hoischen L., “Approximation und Interpolation durch ganze Funktionen”, J. Approximation Theory, 15 (1975), 116–123 | DOI | MR | Zbl
[15] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, New York, 1990, 440 pp. ; v. II, 2005, 394 pp. | MR
[16] Kaplan W., “Approximation by entire functions”, Michigan Math. J., 3 (1955), 43–52 | DOI | MR
[17] Keldych M. V., “Sur la représentation par des séries de polynomes des fonctions d'une variable complexe dans de domaines fermés”, Mat. Sb., 16:58 (1945), 249–258 (in Russian) | MR | Zbl
[18] Mergelyan S. N., “Uniform approximations of functions of a complex variable”, Uspehi Matem. Nauk, 7:2(48) (1952), 31–122 (in Russian) | MR
[19] Nersesyan A. A., “Simultaneous tangent approximation of functions and their derivatives”, Izv. AN ArmSSR, Ser. Mat., 8 (1973), 464–473 (in Russian) | MR
[20] Nersesyan A. A., “Simultaneous tangent approximation theorem”, Izv. AN ArmSSR, Ser. Mat., 13 (1978), 442–447 (in Russian) | MR | Zbl
[21] Nersesyan A. A., “On uniform approximation with simultaneous interpolation by analytic functions”, Izv. AN ArmSSR, Ser. Mat., 15 (1980), 249–257 (in Russian) | MR | Zbl
[22] Rubel L. A., Venkateswaran S., “Simultaneous approximation and interpolation by entire functions”, Arch. Math., 27 (1976), 526–529 | DOI | MR | Zbl
[23] Sheinberg S., “Uniform approximation by entire functions”, J. Analyse Math., 29 (1976), 16–18 | DOI | MR
[24] Sinclair A., “$|\varepsilon(z)|$-closeness of approximation”, Pacific J. Math., 15 (1965), 1405–1413 | DOI | MR | Zbl
[25] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 2016, 312 pp. | MR
[26] Ter-Israelyan L. A., “Uniform and tangent approximation of functions that are holomorphic in an angle by meromorphic functions with an estimate of their growth”, Izv. AN ArmSSR, Ser. Mat., 6 (1971), 67–80 (in Russian) | MR | Zbl
[27] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003, 454 pp. | DOI | MR | Zbl
[28] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009, 672 pp. | DOI | MR | Zbl
[29] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl
[30] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, 1992, 185–194 | DOI | MR | Zbl
[31] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl