Weighted variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates
Problemy analiza, Tome 11 (2022) no. 3, pp. 66-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the weighted variable Hardy space $H^{p(\cdot)}_{L,w}(\mathbb{R}^n)$ associated with the operator $L$, which has a bounded holomorphic functional calculus and fulfills the Davies-Gaffney estimates. More precisely, we establish the molecular characterization of $H^{p(\cdot)}_{L,w}(\mathbb{R}^n)$ and we show that the new weighted variable bounded mean oscillation-type space $BMO^{p(\cdot),M}_{L^*,w}$ represents the dual space of $H^{p(\cdot)}_{L,w}(\mathbb{R}^n)$, where $L^*$ denotes the adjoint operator of $L$ on $L^2(\mathbb{R}^n)$.
Keywords: weighted Hardy spaces, variable exponent, Davies-Gaffney estimates, molecular decomposition, maximal function, dual space.
@article{PA_2022_11_3_a5,
     author = {B. Laadjal and K. Saibi and O. Melkemi and Z. Mokhtari},
     title = {Weighted variable {Hardy} spaces associated with operators satisfying {Davies-Gaffney} estimates},
     journal = {Problemy analiza},
     pages = {66--90},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a5/}
}
TY  - JOUR
AU  - B. Laadjal
AU  - K. Saibi
AU  - O. Melkemi
AU  - Z. Mokhtari
TI  - Weighted variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates
JO  - Problemy analiza
PY  - 2022
SP  - 66
EP  - 90
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a5/
LA  - ru
ID  - PA_2022_11_3_a5
ER  - 
%0 Journal Article
%A B. Laadjal
%A K. Saibi
%A O. Melkemi
%A Z. Mokhtari
%T Weighted variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates
%J Problemy analiza
%D 2022
%P 66-90
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_3_a5/
%G ru
%F PA_2022_11_3_a5
B. Laadjal; K. Saibi; O. Melkemi; Z. Mokhtari. Weighted variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Problemy analiza, Tome 11 (2022) no. 3, pp. 66-90. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a5/

[1] Albrecht D., Duong X. T., McIntosh A., “Operator theory and harmonic analysis”, Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ., 34, 1996, 77–136 | MR | Zbl

[2] Bui T. A., Cao J., Ky L. D., Yang D. and Yang S., “Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates”, Anal. Geom. Metr. Spaces, 1 (2013), 69–129 | DOI | MR | Zbl

[3] Cruz-Uribe D., Diening L., Hästö P., “The maximal operator on weighted variable Lebesgue spaces”, Fract. Calc. Appl. Anal., 14 (2011), 361–374 | DOI | MR | Zbl

[4] Cruz-Uribe D. and Wang L. A. D., “Variable Hardy spaces”, Indiana Univ. Math. J., 63:2 (2014), 447–493 | DOI | MR | Zbl

[5] Davies E. B., “Uniformly elliptic operators with measurable coefficients”, J. Funct. Anal., 132:1 (1995), 141–169 | DOI | MR | Zbl

[6] Diening L. Harjulehto P., Hästö P. and Růžička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[7] Fefferman C. and Stein E.M., “$H^p $ spaces of several variables”, Acta Math., 129:3–4 (1979), 137–193 | MR

[8] Gaffney M., “The conservation property of the heat equation on Riemannian manifolds”, Comm. Pure Appl. Math., 12 (1959), 1–11 | DOI | MR | Zbl

[9] Haase M., The functional calculus for sectorial operators, Operator Theory: Advances and Applications, 169, Birkäuser Verlag, Basel, 2006 | MR | Zbl

[10] Harjulehto P., Hästö P. and Pere M., “Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator”, Real Anal. Exchange, 30:1 (2004/05), 87–103 http://projecteuclid.org/euclid.rae/1122482118 | DOI | MR

[11] Ho K. P., “Atomic decompositions of weighted Hardy-Morrey spaces”, Hokkaido Math. J., 42:1 (2013), 131–157 | DOI | MR | Zbl

[12] Ho K. P., “Atomic decompositions of weighted Hardy spaces with variable exponents”, Tohoku Math. J. (2), 69:3 (2017), 383–413 | DOI | MR | Zbl

[13] Hofman S. Lu G., Mitrea D., Mitrea M. and Yan L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc., 2014, no. 1007, 2011, vi+78 pp. | DOI | MR

[14] Hofmann S. and Mayboroda S., “Hardy and BMO spaces associated to divergence form elliptic operators”, Math. Ann., 344:1 (2009), 37–116 | DOI | MR | Zbl

[15] Hou S., Yang D., and Yang S., “Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications”, Commun. Contemp. Math., 15:6 (2013), 1350029 | DOI | MR | Zbl

[16] Jiang R. and Yang D., “New Orlicz-Hardy spaces associated with divergence form elliptic operators”, J. Funct. Anal., 258:4 (2010), 1167–1224 | DOI | MR | Zbl

[17] Jiao Y., Saibi K., Zhang C., “Weighted $L^q(\cdot) $-estimates for the nonlinear parabolic equations with non-standard growth”, J. Math Anal. and App., 489:1 (2020), 124145 | DOI | MR | Zbl

[18] McIntosh A., “Operators which have an $H^\infty $ functional calculus”, Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre for Math. App. Austral. Nat. Univ. Canberra, 1986, 210–231 | MR | Zbl

[19] Melkemi O., Saibi K., and Mokhtari Z., “Weighted variable Hardy spaces on domains”, Adv. Oper. Theory, 6:3 (2021), 56 | DOI | MR | Zbl

[20] Nakai E. and Sawano Y., “Hardy spaces with variable exponents and generalized Campanato spaces”, J. Funct. Anal., 262:6 (2012), 3665–3748 | DOI | MR | Zbl

[21] Saibi K., “Intrinsic Square Function Characterizations of Variable Hardy-Lorentz Spaces”, J. Funct. Spaces, 2020, 2681719 | DOI | MR | Zbl

[22] Stei E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N. J., 1970 | MR | Zbl

[23] Stein E. M. and Weiss G., “On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces”, Acta Math., 103 (1960), 25–62 | DOI | MR | Zbl

[24] Yang D., Zhang J. and Zhuo C., “Variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates”, Proc. Edinb. Proc. Edinb. Math. Soc. (2), 61:3 (2018), 759–810 | DOI | MR | Zbl

[25] Yang D. and Zhang J., “Variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates on metric measure spaces of homogeneous type”, Ann. Acad. Sci. Fenn. Math., 43:1 (2018), 47–87 | DOI | MR | Zbl

[26] Yang D., and Zhuo C., “Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators”, Ann. Acad. Sci. Fenn. Math., 41:1 (2016), 357–398 | DOI | MR | Zbl

[27] Zhuo C., Yang D., and Liang Y., “Intrinsic square function characterizations of Hardy spaces with variable exponents”, Bull. Malays. Math. Sci. Soc., 39:4 (2016), 1541–1577 | DOI | MR | Zbl

[28] Zuo Y., Saibi K. and Jiao Y., “Variable Hardy-Lorentz spaces associated to operators satisfying Davies-Gaffney estimates”, Banach. J. Math. anal., 13:4 (2019), 769–797 | DOI | MR | Zbl