Generalization of Titchmarsh'~s theorem for the first Hankel-Clifford transform in the space {\boldmath${L^{p}_{\mu}}((0,+\infty))$}
Problemy analiza, Tome 11 (2022) no. 3, pp. 56-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a generalized translation operator, we intend to establish generalizations of the Titchmarsh theorem ([ref14], theorem 84) for the first Hankel-Clifford transform for certain classes of functions in the space $L^{p}_{\mu}((0,+\infty))$, where $1$.
Keywords: first Hankel-Clifford transform, generalized translation operator, Clifford-Lipschitz class, Dini-Clifford-Lipschitz class.
@article{PA_2022_11_3_a4,
     author = {M. El Hamma and A. Mahfoud},
     title = {Generalization of {Titchmarsh'~s} theorem for the first {Hankel-Clifford} transform in the space {\boldmath${L^{p}_{\mu}}((0,+\infty))$}},
     journal = {Problemy analiza},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a4/}
}
TY  - JOUR
AU  - M. El Hamma
AU  - A. Mahfoud
TI  - Generalization of Titchmarsh'~s theorem for the first Hankel-Clifford transform in the space {\boldmath${L^{p}_{\mu}}((0,+\infty))$}
JO  - Problemy analiza
PY  - 2022
SP  - 56
EP  - 65
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a4/
LA  - ru
ID  - PA_2022_11_3_a4
ER  - 
%0 Journal Article
%A M. El Hamma
%A A. Mahfoud
%T Generalization of Titchmarsh'~s theorem for the first Hankel-Clifford transform in the space {\boldmath${L^{p}_{\mu}}((0,+\infty))$}
%J Problemy analiza
%D 2022
%P 56-65
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_3_a4/
%G ru
%F PA_2022_11_3_a4
M. El Hamma; A. Mahfoud. Generalization of Titchmarsh'~s theorem for the first Hankel-Clifford transform in the space {\boldmath${L^{p}_{\mu}}((0,+\infty))$}. Problemy analiza, Tome 11 (2022) no. 3, pp. 56-65. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a4/