Analytic functions of infinite order in half-plane
Problemy analiza, Tome 11 (2022) no. 2, pp. 59-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

J. B. Meles (1979) considered entire functions with zeros restricted to a finite number of rays. In particular, it was proved that if $f$ is an entire function of infinite order with zeros restricted to a finite number of rays, then its lower order equals infinity. In this paper, we prove a similar result for a class of functions analytic in the upper half-plane. The analytic function $f$ in $\mathbb{C}_+=\{z:\Im z>0\}$ is called proper analytic if $\limsup\limits_{z\to t}\ln|f(z)|\leq 0$ for all real numbers $t\in\mathbb{R}$. The class of the proper analytic functions is denoted by $JA$. The full measure of a function $f\in JA$ is a positive measure, which justifies the term "proper analytic function". In this paper, we prove that if a function $f$ is the proper analytic function in the half-plane $\mathbb{C}_+$ of infinite order with zeros restricted to a finite number of rays $\mathbb{L}_k$ through the origin, then its lower order equals infinity.
Keywords: half-plane, proper analytic function, infinite order, lower order, full measure.
Mots-clés : Fourier coefficients
@article{PA_2022_11_2_a4,
     author = {K. G. Malyutin and M. V. Kabanko and T. V. Shevtsova},
     title = {Analytic functions of infinite order in half-plane},
     journal = {Problemy analiza},
     pages = {59--71},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
AU  - T. V. Shevtsova
TI  - Analytic functions of infinite order in half-plane
JO  - Problemy analiza
PY  - 2022
SP  - 59
EP  - 71
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/
LA  - en
ID  - PA_2022_11_2_a4
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%A T. V. Shevtsova
%T Analytic functions of infinite order in half-plane
%J Problemy analiza
%D 2022
%P 59-71
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/
%G en
%F PA_2022_11_2_a4
K. G. Malyutin; M. V. Kabanko; T. V. Shevtsova. Analytic functions of infinite order in half-plane. Problemy analiza, Tome 11 (2022) no. 2, pp. 59-71. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/

[1] Fedorov M. A. and Grishin A. F., “Some Questions of Nevanlinna Theory for the Complex Half–Plane”, Math. Physics, Analysis and Geometry (Kluwer Acad. Publish.), 1:3 (1998), 223–271 | MR | Zbl

[2] Goldberg A. A., “Nevanlinna's lemma on the logarithmic derivative of meromorphic function”, Math. Notes, 17:4 (1975), 310–312 | DOI | MR | Zbl

[3] Goldberg A. A. and Ostrovskii I. V., Distribution of Values of Meromorphic Functions, English revised edition, Amer. Math. Soc., Providence, RI, 2008 | MR

[4] Grishin A. F., “Continuity and asymptotical continuity of subharmonic functions”, Math. Phys. Anal. Geom., 1:2 (1994), 193–215 (in Russian) | MR | Zbl

[5] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth”, Math. USSR-Sb., 35:1 (1979), 63–84 | DOI | MR | Zbl

[6] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth. II”, Math. USSR-Sb., 41:1 (1982), 101–113 | DOI | MR

[7] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth. III”, Math. USSR-Sb., 48:2 (1984), 327–338 | DOI | MR | Zbl

[8] Levin B. Ya., Distribution of Zeros of Entire Functions, English revised edition, Amer. Math. Soc., Providence, RI, 1980 | MR

[9] Malyutin K. G., “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sb. Math., 192:6 (2001), 843–861 | DOI | MR | Zbl

[10] Malyutin K. G. and Sadik N., “Representation of subharmonic functions in a half-plane”, Sb. Math., 198:12 (2007), 1747–1761 | DOI | MR | Zbl

[11] Miles J. B., “Quotient representation of meromorphic functions”, J. d'Analyse Math., 25 (1972), 371–388 | DOI | MR | Zbl

[12] Miles J. B., “On entire functions of infinite order with radially distributed zeros”, Pacif. J. Math., 81:1 (1979), 131–157 | DOI | MR | Zbl

[13] Miles J. B. and Shea D. F., “An extremal problem in value distribution theory”, Quart. J. Math. Oxford, 24:1 (1973), 377–383 | DOI | MR | Zbl

[14] Miles J. B. and Shea D. F., “On the grows of meromorphic functions having at least one deficient value”, Duke Math. J., 43:1 (1976), 171–186 | DOI | MR | Zbl

[15] Nevanlinna R., “Über die Eigenschaften meromorpher Functionen in einem Winkelraum”, Acta Soc. Sci. Fenn., 50:12 (1925), 1–45

[16] Rubel L. A, Taylor B. A., “Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | DOI | MR | Zbl

[17] Shevtsova T. V., “Analytic functions of infinite order on the half-plane with zeros on imaginary axis”, Vestn. Bashkir. Gos. Univ. Ser. Mat., Mechanics, 26:2 (2021), 287–292 (in Russian) | DOI | MR