Analytic functions of infinite order in half-plane
Problemy analiza, Tome 11 (2022) no. 2, pp. 59-71

Voir la notice de l'article provenant de la source Math-Net.Ru

J. B. Meles (1979) considered entire functions with zeros restricted to a finite number of rays. In particular, it was proved that if $f$ is an entire function of infinite order with zeros restricted to a finite number of rays, then its lower order equals infinity. In this paper, we prove a similar result for a class of functions analytic in the upper half-plane. The analytic function $f$ in $\mathbb{C}_+=\{z:\Im z>0\}$ is called proper analytic if $\limsup\limits_{z\to t}\ln|f(z)|\leq 0$ for all real numbers $t\in\mathbb{R}$. The class of the proper analytic functions is denoted by $JA$. The full measure of a function $f\in JA$ is a positive measure, which justifies the term "proper analytic function". In this paper, we prove that if a function $f$ is the proper analytic function in the half-plane $\mathbb{C}_+$ of infinite order with zeros restricted to a finite number of rays $\mathbb{L}_k$ through the origin, then its lower order equals infinity.
Keywords: half-plane, proper analytic function, infinite order, lower order, full measure.
Mots-clés : Fourier coefficients
@article{PA_2022_11_2_a4,
     author = {K. G. Malyutin and M. V. Kabanko and T. V. Shevtsova},
     title = {Analytic functions of infinite order in half-plane},
     journal = {Problemy analiza},
     pages = {59--71},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
AU  - T. V. Shevtsova
TI  - Analytic functions of infinite order in half-plane
JO  - Problemy analiza
PY  - 2022
SP  - 59
EP  - 71
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/
LA  - en
ID  - PA_2022_11_2_a4
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%A T. V. Shevtsova
%T Analytic functions of infinite order in half-plane
%J Problemy analiza
%D 2022
%P 59-71
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/
%G en
%F PA_2022_11_2_a4
K. G. Malyutin; M. V. Kabanko; T. V. Shevtsova. Analytic functions of infinite order in half-plane. Problemy analiza, Tome 11 (2022) no. 2, pp. 59-71. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a4/