Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_2_a1, author = {Y.-L. Chou}, title = {A note on almost uniform continuity of {Borel} functions on {Polish} metric spaces}, journal = {Problemy analiza}, pages = {24--28}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a1/} }
Y.-L. Chou. A note on almost uniform continuity of Borel functions on Polish metric spaces. Problemy analiza, Tome 11 (2022) no. 2, pp. 24-28. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a1/
[1] Billingsley P., Convergence of Probability Measures, second edition, Wiley, 1999 | MR | Zbl
[2] Federer H., Geometric Measure Theory, reprint of the first edition, Springer, 1996 | MR | Zbl
[3] Folland G. B., Real Analysis: Modern Techniques and Their Applications, second edition, Wiley, 2007 | MR
[4] Kechris A., Classical Descriptive Set Theory, Springer, 1995 | MR | Zbl
[5] McShane E. J., “Extension of range of functions”, Bull. Amer. Math. Soc., 40 (1934), 837–842 | DOI | MR
[6] Rudin W., Real and Complex Analysis, (international) third edition, McGraw-Hill, 1987 | MR | Zbl
[7] Villani C., Optimal Transport: Old and New, Springer, 2009 | MR | Zbl