Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_1_a9, author = {S. R. Swamy and S. Yal\c{c}{\i}n}, title = {Coefficient bounds for regular and bi-univalent functions linked with {Gegenbauer} polynomials}, journal = {Problemy analiza}, pages = {133--144}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/} }
TY - JOUR AU - S. R. Swamy AU - S. Yalçın TI - Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials JO - Problemy analiza PY - 2022 SP - 133 EP - 144 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/ LA - en ID - PA_2022_11_1_a9 ER -
S. R. Swamy; S. Yalçın. Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Problemy analiza, Tome 11 (2022) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/
[1] Amourah A., Alamoush A., Al-Kaseasbeh M., “Gegenbauer polynomials and biunivalent functions”, Palestine J. Math., 10:2 (2021), 625–632
[2] Amourah A., Frasin B. A., Abdeljawad T., “Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials”, J. Funct. Spaces, 2021 (2021), 5574673, 7 pp. | DOI
[3] Brannan D. A., Taha T. S., “On some classes of bi-univalent functions”, Mathematical analysis and its applications (Kuwait), KFAS Proceedings Series, 3, eds. S. M. Mazhar, A. Hamoui, N.S. Faour, Pergamon Press (Elsevier Science Limited), Oxford, 1985, 53–60; 1988; Stud. Univ. Babeş-Bolyai Math., 31:2 (1986), 70–77 | DOI
[4] Brannan D. A., Clunie J. G., “Aspects of contemporary complex analysis”, Proceedings of the NATO Advanced study institute (University of Durhary), Academic press, New York, 1979
[5] Duren P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983
[6] Fekete M., Szegö G., “Eine Bemerkung Über Ungerade Schlichte Funktionen”, J. Lond. Math. Soc., 89 (1933), 85–89 (in German) | DOI
[7] Frasin B. A., Aouf M. K., “New subclasses of bi-univalent functions”, Appl. Math. Lett., 24:9 (2011), 1569–1573 | DOI
[8] Kiepiela K., Naraniecka I., Szynal J., “The Gegenbauer polynomials and typically real functions”, J. Comput. Appl. Math., 153:1–2 (2003), 273–282 | DOI
[9] Lewin M., “On a coefficient problem for bi-univalent functions”, Proc. Amer. Math. Soc., 18:1 (1967), 63–68 | DOI
[10] Srivastava H. M., Mishra A. K., Gochhayat P., “Certain subclasses of analytic and bi-univalent functions”, Appl. Math. Lett., 23:10 (2010), 1188–1192 | DOI
[11] Tan D. L., “Coefficient estimates for bi-univalent functions”, Chinese Ann. Math. Ser. A, 5:5 (1984), 559–568