Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials
Problemy analiza, Tome 11 (2022) no. 1, pp. 133-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of the paper is to initiate and explore two sets of regular and bi-univalent (or bi-Schlicht) functions in $\mathfrak{D} =\{z\in\mathbb{C}:|z| 1\}$ linked with Gegenbauer polynomials. We investigate certain coefficient bounds for functions in these families. Continuing the study on the initial coefficients of these families, we obtain the functional of Fekete-Szegö for each of the two families. Furthermore, we present few interesting observations of the results investigated.
Keywords: Fekete-Szegö, functional, regular function, bi-univalent function, Gegenbauer polynomials.
@article{PA_2022_11_1_a9,
     author = {S. R. Swamy and S. Yal\c{c}{\i}n},
     title = {Coefficient bounds for regular and bi-univalent functions linked with {Gegenbauer} polynomials},
     journal = {Problemy analiza},
     pages = {133--144},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/}
}
TY  - JOUR
AU  - S. R. Swamy
AU  - S. Yalçın
TI  - Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials
JO  - Problemy analiza
PY  - 2022
SP  - 133
EP  - 144
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/
LA  - en
ID  - PA_2022_11_1_a9
ER  - 
%0 Journal Article
%A S. R. Swamy
%A S. Yalçın
%T Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials
%J Problemy analiza
%D 2022
%P 133-144
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/
%G en
%F PA_2022_11_1_a9
S. R. Swamy; S. Yalçın. Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Problemy analiza, Tome 11 (2022) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a9/