Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_1_a5, author = {A. Fadili and F. Maragh}, title = {Integral resolvent for {Volterra} equations and {Favard} spaces}, journal = {Problemy analiza}, pages = {67--80}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a5/} }
A. Fadili; F. Maragh. Integral resolvent for Volterra equations and Favard spaces. Problemy analiza, Tome 11 (2022) no. 1, pp. 67-80. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a5/
[1] H. Bounit, A. Fadili, “On the Favard spaces and the admissibility for Volterra systems with scalar kernel”, Electronic Journal of Differential Equations, 42 (2015), 1–21
[2] P. L. Butzer, H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag, New York, 1967
[3] W. Desch, J. Pruss, “Counterexamples for abstract linear Volterra equations”, J. Integral Equations Applications, 5:1 (1993), 29–45 | DOI
[4] K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, New York–Berlin–Heidelberg, 2000 | DOI
[5] R. Grimmer, J. Prüss, “On linear Volterra equations in Banach spaces”, Comp Maths with Appls., 11:1 (1985), 189–205
[6] M. Jung, “Duality theory for solutions to Volterra integral equations”, J.M.A.A, 230:1 (1999), 112–134 | DOI
[7] C. Lizama, V. Poblete, “On multiplicative perturbation of integral resolvent families”, Journal of Mathematical Analysis and Applications, 327:2 (2007), 1335–1359 | DOI
[8] C. Lizama, J. Sanchez, “On perturbation of k-regularized resolvent families”, Taiwanese Journal of Mathematics, 7:2 (2003), 217–227 | DOI
[9] F. Maragh, H. Bounit, A. Fadili, H. Hammouri, “On the admissible control operators for linear and bilinear systems and the Favard spaces”, Bulletin of the Belgian Mathematical Society, 21:4 (2014), 711–732 | DOI
[10] J.M.A.M. van Neerven, The adjoint of a Semigroup of Linear Operators, Lecture Notes Math., 1529, Springer-Verlag, Berlin–Heidelberg–New York, 1992
[11] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag, Basel, 1993
[12] Michiaki Watanabe, “A new proof of the generation theorem of cosine families in Banach spaces”, Houston J. Math., 10:2 (1984), 285–290