A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations and systems of equations
Problemy analiza, Tome 11 (2022) no. 1, pp. 32-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we compare the radii of convergence of Jarratt-type methods under the same set of conditions for solving nonlinear equations and systems of equations. Our convergence analysis is based on the first Fréchet derivative that only appears on the method. Numerical examples where the theoretical results are tested complete the paper.
Keywords: Jarratt type method, Banach space, radious of convergence.
@article{PA_2022_11_1_a2,
     author = {I. K. Argyros and S. George and C. Argyros},
     title = {A ball comparison between extended modified {Jarratt} methods under the same set of conditions for solving equations and systems of equations},
     journal = {Problemy analiza},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a2/}
}
TY  - JOUR
AU  - I. K. Argyros
AU  - S. George
AU  - C. Argyros
TI  - A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations and systems of equations
JO  - Problemy analiza
PY  - 2022
SP  - 32
EP  - 44
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a2/
LA  - en
ID  - PA_2022_11_1_a2
ER  - 
%0 Journal Article
%A I. K. Argyros
%A S. George
%A C. Argyros
%T A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations and systems of equations
%J Problemy analiza
%D 2022
%P 32-44
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a2/
%G en
%F PA_2022_11_1_a2
I. K. Argyros; S. George; C. Argyros. A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations and systems of equations. Problemy analiza, Tome 11 (2022) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a2/

[1] Abbasbandy S., Bakhtiari P., Cordoro A., Torregrosa J. R., Lofti T., “New efficient methods for solving nonlinear systems of equations with arbitrary even order”, Appl. Math. Comput., 287 (2016), 288, 94–103 | DOI

[2] Argyros I. K., “A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach spaces”, J. Math. Anal. Appl., 298 (2004), 374–397 | DOI

[3] Argyros I. K., Convergence and Applications of Newton-Type Iterations, Springer-Verlag, New York, 2008

[4] Argyros I. K., “A semilocal convergence analysis for directional Newton methods”, Math. Comp., 80 (2011), 327–343 | DOI

[5] Argyros I. K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, eds. Chui C. K., Wuytack L., Elsevier Publ. Company, New York, 2007

[6] Argyros I. K., Magreñán A. A., Iterative method and their dynamics with applications, CRC Press, New York, USA, 2017

[7] Argyros I. K., George S., Magreñán A. A., “Local convergence for multi-point-parametric Chebyshev-Halley-type method of higher convergence order”, J. Comput. Appl. Math., 282 (2015), 215–224 | DOI

[8] Argyros I. K., Magreñán A. A., “A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative”, Numer. Algorithms, 71 (2015), 1–23 | DOI

[9] Argyros, I. K., George S., “On the complexity of extending the convergence region for Traub's method”, Journal of Complexity, 56 (2020) | DOI

[10] Argyros I. K., George S., Mathematical modeling for the solution of equations and systems of equations with applications, v. IV, Nova Publishes, NY, 2020

[11] Babajee D. K. R., Dauhoo M. Z., Darvishi M. T., Karami A., Barati A., “Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations”, J. Comput. Appl. Math., 233 (2010), 2002–2012 | DOI

[12] Babajee D. K. R., Dauhoo M. Z., Darvishi M. T., Karami A., Barati A., “A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule”, Applied Mathematics and Computation, 200:1 (2008), 452–458 | DOI

[13] Cordero A., Hueso, J. J., Martinez E., Torregrosa J. R. A., “A modified Newton-Jarratt's composition”, Numer. Algor., 55 (2010), 87–99 | DOI

[14] Cordero A., Torregrosa J. R. A., Vassileva M. P., “Increasing the order of convergence of iterative methods for solving nonlinear systems”, J. Comput. Appl. Math., 252 (2012), 86–94 | DOI

[15] Darvishi M. T., “A two step high order Newton like method for solving systems of nonlinear equations”, Int. J. Pure Appl. Math., 57 (2009), 543–555

[16] Darvishi M. T., “Some three-step iterative methods free from second order derivative for finding solutions of systems of nonlinear equations”, International Journal of Pure and Applied Mathematics, 57:4 (2009), 557–573

[17] Grau-Sáchez M., Grau A., Noguera M., “Ostrowski type methods for solving systems of nonlinear equations”, Appl. Math. Comput., 218 (2011), 2377–2385 | DOI

[18] Jaiswal J. P., “Semilocal convergnece of an eighth-order method in Banach spaces and its computational efficiency”, Numer. Algorithms, 71 (2016), 933–951 | DOI

[19] Jaiswal J. P., “Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency”, Numer. Anal. Appl., 10 (2017), 129–139

[20] Regmi S., Argyros I. K., Undergraduate Research at Cameron University on Iterative Procedures in Banach and Other Spaces, Nova Science Publisher, NY, 2019

[21] Rheinboldt W. C., “An adaptive continuation process for solving systems of nonlinear equations”, Mathematical models and numerical methods, 3, eds. A. N. Tikhonov et al., Banach Center, Warsaw, Poland, 1977, 129–142

[22] Traub J. F., Iterative Methods for the Solution of Mquations, Prentice-Hall, Englewood Cliffs, 1964