Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_1_a1, author = {A. Alb Lupa\c{s}}, title = {Subordination results for a fractional integral operator}, journal = {Problemy analiza}, pages = {20--31}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/} }
A. Alb Lupaş. Subordination results for a fractional integral operator. Problemy analiza, Tome 11 (2022) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/
[1] Alb-Lupaş A., “A subclass of analytic functions defined by a fractional integral operator”, J. Comput. Anal. Appl., 27:3 (2019), 502–505
[2] Alb-Lupaş A., “About a Subclass of Analytic Functions Defined by a Fractional Integral Operator”, Montes Taurus J. Pure Appl. Math., 3:3 (2021), 200–210
[3] Alb-Lupaş A., “Properties on a subclass of analytic functions defined by a fractional integral operator”, J. Comput. Anal. Appl., 27:3 (2019), 506–510
[4] Alb-Lupaş A., “New Applications of the Fractional Integral on Analytic Functions”, Symmetry, 13 (2021), 423 | DOI
[5] Alb-Lupaş A., Cătaş A., “An Application of the Principle of Differential Subordination to Analytic Functions Involving Atangana–Baleanu Fractional Integral of Bessel Functions”, Symmetry, 13 (2021), 971 | DOI
[6] Alb-Lupaş A., Oros G. I., “Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function”, Symmetry, 13 (2021), 327 | DOI
[7] Cho N. E., Aouf A. M. K., “Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients”, Tr. J. of Mathematics, 20 (1996), 553–562
[8] Hallenbeck D. J., Ruscheweyh St., “Subordination by convex functions”, Proc. Amer. Math. Soc., 52 (1975), 191–195
[9] Miller S. S., Mocanu P. T., Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York–Basel, 2000
[10] Ruscheweyh St., “New criteria for univalent functions”, Proc. Amet. Math. Soc., 49 (1975), 109–115
[11] Sălăgean G. St., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer Verlag, Berlin, 1983, 362–372