Subordination results for a fractional integral operator
Problemy analiza, Tome 11 (2022) no. 1, pp. 20-31

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish several differential subordinations regarding the operator $D_{z}^{-\lambda }SR^{m,n}$ defined using the fractional integral of the differential operator $SR^{m,n}$, obtained as a convolution product of Sălăgean operator $S^{m}$ and Ruscheweyh derivative $R^{n}$. By means of the newly obtained operator, a new subclass of analytic functions denoted by $\mathcal{SR}_{m,n,\lambda }\left( \delta \right) $ is introduced and various properties and characteristics of this class are derived, making use of the concept of differential subordination.
Keywords: analytic function, differential subordination, fractional integral, Sălăgean operator, Ruscheweyh derivative.
Mots-clés : convolution product
@article{PA_2022_11_1_a1,
     author = {A. Alb Lupa\c{s}},
     title = {Subordination results for a fractional integral operator},
     journal = {Problemy analiza},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/}
}
TY  - JOUR
AU  - A. Alb Lupaş
TI  - Subordination results for a fractional integral operator
JO  - Problemy analiza
PY  - 2022
SP  - 20
EP  - 31
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/
LA  - en
ID  - PA_2022_11_1_a1
ER  - 
%0 Journal Article
%A A. Alb Lupaş
%T Subordination results for a fractional integral operator
%J Problemy analiza
%D 2022
%P 20-31
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/
%G en
%F PA_2022_11_1_a1
A. Alb Lupaş. Subordination results for a fractional integral operator. Problemy analiza, Tome 11 (2022) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/