Subordination results for a fractional integral operator
Problemy analiza, Tome 11 (2022) no. 1, pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish several differential subordinations regarding the operator $D_{z}^{-\lambda }SR^{m,n}$ defined using the fractional integral of the differential operator $SR^{m,n}$, obtained as a convolution product of Sălăgean operator $S^{m}$ and Ruscheweyh derivative $R^{n}$. By means of the newly obtained operator, a new subclass of analytic functions denoted by $\mathcal{SR}_{m,n,\lambda }\left( \delta \right) $ is introduced and various properties and characteristics of this class are derived, making use of the concept of differential subordination.
Keywords: analytic function, differential subordination, fractional integral, Sălăgean operator, Ruscheweyh derivative.
Mots-clés : convolution product
@article{PA_2022_11_1_a1,
     author = {A. Alb Lupa\c{s}},
     title = {Subordination results for a fractional integral operator},
     journal = {Problemy analiza},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/}
}
TY  - JOUR
AU  - A. Alb Lupaş
TI  - Subordination results for a fractional integral operator
JO  - Problemy analiza
PY  - 2022
SP  - 20
EP  - 31
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/
LA  - en
ID  - PA_2022_11_1_a1
ER  - 
%0 Journal Article
%A A. Alb Lupaş
%T Subordination results for a fractional integral operator
%J Problemy analiza
%D 2022
%P 20-31
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/
%G en
%F PA_2022_11_1_a1
A. Alb Lupaş. Subordination results for a fractional integral operator. Problemy analiza, Tome 11 (2022) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a1/

[1] Alb-Lupaş A., “A subclass of analytic functions defined by a fractional integral operator”, J. Comput. Anal. Appl., 27:3 (2019), 502–505

[2] Alb-Lupaş A., “About a Subclass of Analytic Functions Defined by a Fractional Integral Operator”, Montes Taurus J. Pure Appl. Math., 3:3 (2021), 200–210

[3] Alb-Lupaş A., “Properties on a subclass of analytic functions defined by a fractional integral operator”, J. Comput. Anal. Appl., 27:3 (2019), 506–510

[4] Alb-Lupaş A., “New Applications of the Fractional Integral on Analytic Functions”, Symmetry, 13 (2021), 423 | DOI

[5] Alb-Lupaş A., Cătaş A., “An Application of the Principle of Differential Subordination to Analytic Functions Involving Atangana–Baleanu Fractional Integral of Bessel Functions”, Symmetry, 13 (2021), 971 | DOI

[6] Alb-Lupaş A., Oros G. I., “Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function”, Symmetry, 13 (2021), 327 | DOI

[7] Cho N. E., Aouf A. M. K., “Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients”, Tr. J. of Mathematics, 20 (1996), 553–562

[8] Hallenbeck D. J., Ruscheweyh St., “Subordination by convex functions”, Proc. Amer. Math. Soc., 52 (1975), 191–195

[9] Miller S. S., Mocanu P. T., Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York–Basel, 2000

[10] Ruscheweyh St., “New criteria for univalent functions”, Proc. Amet. Math. Soc., 49 (1975), 109–115

[11] Sălăgean G. St., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer Verlag, Berlin, 1983, 362–372