Interpolation problems for functions with zero ball means
Problemy analiza, Tome 10 (2021) no. 3, pp. 129-140

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n\geq 2$, $V_r(\mathbb{R}^n)$ be the set of functions with zero integrals over all balls in $\mathbb{R}^n$ of radius $r$. Various interpolation problems for the class $V_r(\mathbb{R}^n)$ are studied. In the case when the set of interpolation nodes is finite, we solve the interpolation problem under general conditions. For the problems with infinite set of nodes, some sufficient conditions of solvability are founded. Note that an essential condition is that the definition of the class $V_r(\mathbb{R}^n)$ involves integration over balls. For instance, it can be shown that the analogues of our results in which the class of functions is defined using zero integrals over all shifts of a fixed parallelepiped in $\mathbb{R}^n$ do not hold true.
Keywords: interpolation problems, spherical means, mean periodicity.
@article{PA_2021_10_3_a9,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Interpolation problems for functions with zero ball means},
     journal = {Problemy analiza},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Interpolation problems for functions with zero ball means
JO  - Problemy analiza
PY  - 2021
SP  - 129
EP  - 140
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/
LA  - en
ID  - PA_2021_10_3_a9
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Interpolation problems for functions with zero ball means
%J Problemy analiza
%D 2021
%P 129-140
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/
%G en
%F PA_2021_10_3_a9
V. V. Volchkov; Vit. V. Volchkov. Interpolation problems for functions with zero ball means. Problemy analiza, Tome 10 (2021) no. 3, pp. 129-140. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/