Interpolation problems for functions with zero ball means
Problemy analiza, Tome 10 (2021) no. 3, pp. 129-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n\geq 2$, $V_r(\mathbb{R}^n)$ be the set of functions with zero integrals over all balls in $\mathbb{R}^n$ of radius $r$. Various interpolation problems for the class $V_r(\mathbb{R}^n)$ are studied. In the case when the set of interpolation nodes is finite, we solve the interpolation problem under general conditions. For the problems with infinite set of nodes, some sufficient conditions of solvability are founded. Note that an essential condition is that the definition of the class $V_r(\mathbb{R}^n)$ involves integration over balls. For instance, it can be shown that the analogues of our results in which the class of functions is defined using zero integrals over all shifts of a fixed parallelepiped in $\mathbb{R}^n$ do not hold true.
Keywords: interpolation problems, spherical means, mean periodicity.
@article{PA_2021_10_3_a9,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Interpolation problems for functions with zero ball means},
     journal = {Problemy analiza},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Interpolation problems for functions with zero ball means
JO  - Problemy analiza
PY  - 2021
SP  - 129
EP  - 140
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/
LA  - en
ID  - PA_2021_10_3_a9
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Interpolation problems for functions with zero ball means
%J Problemy analiza
%D 2021
%P 129-140
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/
%G en
%F PA_2021_10_3_a9
V. V. Volchkov; Vit. V. Volchkov. Interpolation problems for functions with zero ball means. Problemy analiza, Tome 10 (2021) no. 3, pp. 129-140. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a9/

[1] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Several Complex Variables V, Chap. 1, Encyclopedia of Math. Sciences, 54, 1993, 1–108

[2] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternionique — cas des deux boules”, Complex Variables, 43 (2000), 29–57 | MR | Zbl

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. II, McGraw-Hill, New York, 1953 | MR

[4] Evgrafov M. A., Asymptotic Estimates and Entire Functions, Gordon and Breach, New York, 1961 | MR | Zbl

[5] John F., Plane Waves and Spherical Means, Applied to Partial Differential Equations, Dover, New York, 1971 | MR

[6] Rawat R., Sitaram A., “The injectivity of the Pompeiu transform and $L^p$-analogues of the Wiener Tauberian theorem”, Israel J. Math., 91 (1995), 307–316 | DOI | MR | Zbl

[7] Schneider R., “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26 (1969), 381–384 | DOI | MR | Zbl

[8] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb{R}^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[9] Thangavelu S., “Spherical means and $\mathrm{CR}$ functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286 | DOI | MR | Zbl

[10] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[11] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl

[12] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009 | MR | Zbl

[13] Volchkov V. V., “Solution of the support problem for several function classes”, Sbornik: Math., 188:9 (1997), 1279–1294 | DOI | MR | Zbl

[14] Volchkov Vit. V., Volchkova N. P., “The removability problem for functions with zero spherical means”, Siberian Math. J., 58:3 (2017), 419–426 | DOI | MR | Zbl

[15] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, 1992, 185–194 | DOI | MR | Zbl

[16] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl